薄换热面板式换热器局部换热系数的实验研究

IF 1.6 4区 工程技术 Q3 ENGINEERING, MECHANICAL
Tomoki Hirokawa, Ayarou Yamasaki, Osamu Kawanami
{"title":"薄换热面板式换热器局部换热系数的实验研究","authors":"Tomoki Hirokawa, Ayarou Yamasaki, Osamu Kawanami","doi":"10.1115/1.4063916","DOIUrl":null,"url":null,"abstract":"Abstract This paper presents an experimental investigation on local heat transfer characteristics of single-phase flow in a plate heat exchanger (PHE). The local heat transfer coefficient is evaluated using a test section with PHE geometry for measuring wall temperature distribution. The test section of 1.5 mm thickness is employed to consider the heat conduction effect of the heat transfer plate. The results indicated that the local heat transfer coefficient is influenced by the development of the thermal boundary layer along the flow direction and the maldistribution of water flows along both the direction perpendicular to the flow and the stacking direction. The harmonic mean heat transfer coefficient calculated by the measured local heat transfer coefficient agrees with the average heat transfer coefficient evaluated by the modified Wilson plot method within ±25 % and within ±16 % for the hot side and the cold side, respectively.","PeriodicalId":17404,"journal":{"name":"Journal of Thermal Science and Engineering Applications","volume":"14 1","pages":"0"},"PeriodicalIF":1.6000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Investigation of Local Heat Transfer Coefficient in a Plate Heat Exchanger Using a Thin Heat Transfer Surface\",\"authors\":\"Tomoki Hirokawa, Ayarou Yamasaki, Osamu Kawanami\",\"doi\":\"10.1115/1.4063916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper presents an experimental investigation on local heat transfer characteristics of single-phase flow in a plate heat exchanger (PHE). The local heat transfer coefficient is evaluated using a test section with PHE geometry for measuring wall temperature distribution. The test section of 1.5 mm thickness is employed to consider the heat conduction effect of the heat transfer plate. The results indicated that the local heat transfer coefficient is influenced by the development of the thermal boundary layer along the flow direction and the maldistribution of water flows along both the direction perpendicular to the flow and the stacking direction. The harmonic mean heat transfer coefficient calculated by the measured local heat transfer coefficient agrees with the average heat transfer coefficient evaluated by the modified Wilson plot method within ±25 % and within ±16 % for the hot side and the cold side, respectively.\",\"PeriodicalId\":17404,\"journal\":{\"name\":\"Journal of Thermal Science and Engineering Applications\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermal Science and Engineering Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063916\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Science and Engineering Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063916","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文对板式换热器内单相流动的局部换热特性进行了实验研究。局部换热系数是用带有PHE几何形状的测试截面来测量壁面温度分布来评估的。采用1.5 mm厚度的试验截面来考虑换热板的导热效果。结果表明,沿流动方向的热边界层发育以及垂直方向和堆积方向的水流不均匀分布都影响局部换热系数。用实测局部换热系数计算得到的调和平均换热系数与修正Wilson图法计算得到的平均换热系数在±25%和±16%的范围内吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental Investigation of Local Heat Transfer Coefficient in a Plate Heat Exchanger Using a Thin Heat Transfer Surface
Abstract This paper presents an experimental investigation on local heat transfer characteristics of single-phase flow in a plate heat exchanger (PHE). The local heat transfer coefficient is evaluated using a test section with PHE geometry for measuring wall temperature distribution. The test section of 1.5 mm thickness is employed to consider the heat conduction effect of the heat transfer plate. The results indicated that the local heat transfer coefficient is influenced by the development of the thermal boundary layer along the flow direction and the maldistribution of water flows along both the direction perpendicular to the flow and the stacking direction. The harmonic mean heat transfer coefficient calculated by the measured local heat transfer coefficient agrees with the average heat transfer coefficient evaluated by the modified Wilson plot method within ±25 % and within ±16 % for the hot side and the cold side, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Thermal Science and Engineering Applications
Journal of Thermal Science and Engineering Applications THERMODYNAMICSENGINEERING, MECHANICAL -ENGINEERING, MECHANICAL
CiteScore
3.60
自引率
9.50%
发文量
120
期刊介绍: Applications in: Aerospace systems; Gas turbines; Biotechnology; Defense systems; Electronic and photonic equipment; Energy systems; Manufacturing; Refrigeration and air conditioning; Homeland security systems; Micro- and nanoscale devices; Petrochemical processing; Medical systems; Energy efficiency; Sustainability; Solar systems; Combustion systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信