自然数的划分及其加权表示函数

IF 0.6 4区 数学 Q3 MATHEMATICS
SHUANG-SHUANG LI, YU-QING SHAN, XIAO-HUI YAN
{"title":"自然数的划分及其加权表示函数","authors":"SHUANG-SHUANG LI, YU-QING SHAN, XIAO-HUI YAN","doi":"10.1017/s0004972723001053","DOIUrl":null,"url":null,"abstract":"Abstract For any positive integers $k_1,k_2$ and any set $A\\subseteq \\mathbb {N}$ , let $R_{k_1,k_2}(A,n)$ be the number of solutions of the equation $n=k_1a_1+k_2a_2$ with $a_1,a_2\\in A$ . Let g be a fixed integer. We prove that if $k_1$ and $k_2$ are two integers with $2\\le k_1<k_2$ and $(k_1,k_2)=1$ , then there does not exist any set $A\\subseteq \\mathbb {N}$ such that $R_{k_1,k_2}(A,n)-R_{k_1,k_2}(\\mathbb {N}\\setminus A,n)=g$ for all sufficiently large integers n , and if $1=k_1<k_2$ , then there exists a set A such that $R_{k_1,k_2}(A,n)-R_{k_1,k_2}(\\mathbb {N}\\setminus A,n)=1$ for all positive integers n .","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":"276 6","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PARTITIONS OF NATURAL NUMBERS AND THEIR WEIGHTED REPRESENTATION FUNCTIONS\",\"authors\":\"SHUANG-SHUANG LI, YU-QING SHAN, XIAO-HUI YAN\",\"doi\":\"10.1017/s0004972723001053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract For any positive integers $k_1,k_2$ and any set $A\\\\subseteq \\\\mathbb {N}$ , let $R_{k_1,k_2}(A,n)$ be the number of solutions of the equation $n=k_1a_1+k_2a_2$ with $a_1,a_2\\\\in A$ . Let g be a fixed integer. We prove that if $k_1$ and $k_2$ are two integers with $2\\\\le k_1<k_2$ and $(k_1,k_2)=1$ , then there does not exist any set $A\\\\subseteq \\\\mathbb {N}$ such that $R_{k_1,k_2}(A,n)-R_{k_1,k_2}(\\\\mathbb {N}\\\\setminus A,n)=g$ for all sufficiently large integers n , and if $1=k_1<k_2$ , then there exists a set A such that $R_{k_1,k_2}(A,n)-R_{k_1,k_2}(\\\\mathbb {N}\\\\setminus A,n)=1$ for all positive integers n .\",\"PeriodicalId\":50720,\"journal\":{\"name\":\"Bulletin of the Australian Mathematical Society\",\"volume\":\"276 6\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Australian Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/s0004972723001053\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Australian Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0004972723001053","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要对于任意正整数$k_1,k_2$和任意集合$A\subseteq \mathbb {N}$,设$R_{k_1,k_2}(A, N)$是方程$ N =k_1a_1+k_2a_2$与$a_1,a_2\在A$中的解的个数。设g为一个固定整数。证明了如果$k_1$和$k_2$是两个整数,且$2\le k_1<k_2$和$(k_1,k_2)=1$,则不存在任何集$A\subseteq \mathbb {N}$使得$R_{k_1,k_2}(A, N)-R_{k_1,k_2}(\ math_1 <k_2$)=g$,如果$1=k_1<k_2$,则存在一个集A使得$R_{k_1,k_2}(A, N)-R_{k_1,k_2}(\ math_1 <k_2}(\mathbb {N}\ set- A, N)对所有正整数N =1$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PARTITIONS OF NATURAL NUMBERS AND THEIR WEIGHTED REPRESENTATION FUNCTIONS
Abstract For any positive integers $k_1,k_2$ and any set $A\subseteq \mathbb {N}$ , let $R_{k_1,k_2}(A,n)$ be the number of solutions of the equation $n=k_1a_1+k_2a_2$ with $a_1,a_2\in A$ . Let g be a fixed integer. We prove that if $k_1$ and $k_2$ are two integers with $2\le k_1
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
14.30%
发文量
149
审稿时长
4-8 weeks
期刊介绍: Bulletin of the Australian Mathematical Society aims at quick publication of original research in all branches of mathematics. Papers are accepted only after peer review but editorial decisions on acceptance or otherwise are taken quickly, normally within a month of receipt of the paper. The Bulletin concentrates on presenting new and interesting results in a clear and attractive way. Published Bi-monthly Published for the Australian Mathematical Society
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信