{"title":"循环正应力作用下平面裂缝滑移演化的实验研究","authors":"Kang Tao, Wengang Dang, Xian Liao, Xingling Li","doi":"10.1007/s40789-023-00654-w","DOIUrl":null,"url":null,"abstract":"Abstract The frictional rupture mechanisms of rock discontinuities considering the dynamic load disturbance still remain unclear. This paper investigates the transitional behaviors of slip events happened on a planar granite fracture under cyclic normal stress with different oscillation amplitudes. The experimental results show that the activations of fast slips always correlate with unloading of normal stress. Besides, the intensive normal stress oscillation can weaken the shear strength which is recoverable when the normal stress return to constant. The rupture patterns are quantified by stress drop, slip length and slip velocity. With the effect of small oscillation amplitudes, the slip events show chaotic shapes, compared to the regular and predictable style under constant normal stress. When the amplitude is large enough, the big and small slip events emerge alternately, showing a compound slip style. Large amplitude of the cyclic normal stress also widens the interval differences of the slip events. This work provides experimental supports for a convincible link between the dynamic stress disturbance and the slip behavior of rock fractures.","PeriodicalId":53469,"journal":{"name":"International Journal of Coal Science & Technology","volume":"59 3","pages":"0"},"PeriodicalIF":6.9000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental study on the slip evolution of planar fractures subjected to cyclic normal stress\",\"authors\":\"Kang Tao, Wengang Dang, Xian Liao, Xingling Li\",\"doi\":\"10.1007/s40789-023-00654-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The frictional rupture mechanisms of rock discontinuities considering the dynamic load disturbance still remain unclear. This paper investigates the transitional behaviors of slip events happened on a planar granite fracture under cyclic normal stress with different oscillation amplitudes. The experimental results show that the activations of fast slips always correlate with unloading of normal stress. Besides, the intensive normal stress oscillation can weaken the shear strength which is recoverable when the normal stress return to constant. The rupture patterns are quantified by stress drop, slip length and slip velocity. With the effect of small oscillation amplitudes, the slip events show chaotic shapes, compared to the regular and predictable style under constant normal stress. When the amplitude is large enough, the big and small slip events emerge alternately, showing a compound slip style. Large amplitude of the cyclic normal stress also widens the interval differences of the slip events. This work provides experimental supports for a convincible link between the dynamic stress disturbance and the slip behavior of rock fractures.\",\"PeriodicalId\":53469,\"journal\":{\"name\":\"International Journal of Coal Science & Technology\",\"volume\":\"59 3\",\"pages\":\"0\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2023-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Coal Science & Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40789-023-00654-w\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Coal Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40789-023-00654-w","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Experimental study on the slip evolution of planar fractures subjected to cyclic normal stress
Abstract The frictional rupture mechanisms of rock discontinuities considering the dynamic load disturbance still remain unclear. This paper investigates the transitional behaviors of slip events happened on a planar granite fracture under cyclic normal stress with different oscillation amplitudes. The experimental results show that the activations of fast slips always correlate with unloading of normal stress. Besides, the intensive normal stress oscillation can weaken the shear strength which is recoverable when the normal stress return to constant. The rupture patterns are quantified by stress drop, slip length and slip velocity. With the effect of small oscillation amplitudes, the slip events show chaotic shapes, compared to the regular and predictable style under constant normal stress. When the amplitude is large enough, the big and small slip events emerge alternately, showing a compound slip style. Large amplitude of the cyclic normal stress also widens the interval differences of the slip events. This work provides experimental supports for a convincible link between the dynamic stress disturbance and the slip behavior of rock fractures.
期刊介绍:
The International Journal of Coal Science & Technology is a peer-reviewed open access journal that focuses on key topics of coal scientific research and mining development. It serves as a forum for scientists to present research findings and discuss challenging issues in the field.
The journal covers a range of topics including coal geology, geochemistry, geophysics, mineralogy, and petrology. It also covers coal mining theory, technology, and engineering, as well as coal processing, utilization, and conversion. Additionally, the journal explores coal mining environment and reclamation, along with related aspects.
The International Journal of Coal Science & Technology is published with China Coal Society, who also cover the publication costs. This means that authors do not need to pay an article-processing charge.