{"title":"不同椭圆曲线Cassels对的比较","authors":"Shenxing Zhang","doi":"10.4064/aa220709-15-7","DOIUrl":null,"url":null,"abstract":"Let $e_1,e_2,e_3$ be nonzero integers satisfying $e_1+e_2+e_3=0$. Let $(a,b,c)$ be a primitive triple of odd integers satisfying $e_1a^2+e_2b^2+e_3c^2=0$. Denote by $E: y^2=x(x-e_1)(x+e_2)$ and $\\mathcal E: y^2=x(x-e_1a^2)(x+e_2b^2)$. Assume that the $2$-Selmer groups of $E$ and $\\mathcal E$ are minimal. Let $n$ be a positive square-free odd integer, where the prime factors of $n$ are nonzero quadratic residues modulo each odd prime factor of $e_1e_2e_3abc$. Then under certain conditions, the $2$-Selmer group and the Cassels pairing of the quadratic twist $E^{(n)}$ coincide with those of $\\mathcal E^{(n)}$. As a corollary, $E^{(n)}$ has Mordell-Weil rank zero without order $4$ element in its Shafarevich-Tate group, if and only if these holds for $\\mathcal E^{(n)}$. We also give some applications for the congruent elliptic curve.","PeriodicalId":37888,"journal":{"name":"Acta Arithmetica","volume":"24 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a comparison of Cassels pairings of different elliptic curves\",\"authors\":\"Shenxing Zhang\",\"doi\":\"10.4064/aa220709-15-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $e_1,e_2,e_3$ be nonzero integers satisfying $e_1+e_2+e_3=0$. Let $(a,b,c)$ be a primitive triple of odd integers satisfying $e_1a^2+e_2b^2+e_3c^2=0$. Denote by $E: y^2=x(x-e_1)(x+e_2)$ and $\\\\mathcal E: y^2=x(x-e_1a^2)(x+e_2b^2)$. Assume that the $2$-Selmer groups of $E$ and $\\\\mathcal E$ are minimal. Let $n$ be a positive square-free odd integer, where the prime factors of $n$ are nonzero quadratic residues modulo each odd prime factor of $e_1e_2e_3abc$. Then under certain conditions, the $2$-Selmer group and the Cassels pairing of the quadratic twist $E^{(n)}$ coincide with those of $\\\\mathcal E^{(n)}$. As a corollary, $E^{(n)}$ has Mordell-Weil rank zero without order $4$ element in its Shafarevich-Tate group, if and only if these holds for $\\\\mathcal E^{(n)}$. We also give some applications for the congruent elliptic curve.\",\"PeriodicalId\":37888,\"journal\":{\"name\":\"Acta Arithmetica\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Arithmetica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4064/aa220709-15-7\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Arithmetica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4064/aa220709-15-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
On a comparison of Cassels pairings of different elliptic curves
Let $e_1,e_2,e_3$ be nonzero integers satisfying $e_1+e_2+e_3=0$. Let $(a,b,c)$ be a primitive triple of odd integers satisfying $e_1a^2+e_2b^2+e_3c^2=0$. Denote by $E: y^2=x(x-e_1)(x+e_2)$ and $\mathcal E: y^2=x(x-e_1a^2)(x+e_2b^2)$. Assume that the $2$-Selmer groups of $E$ and $\mathcal E$ are minimal. Let $n$ be a positive square-free odd integer, where the prime factors of $n$ are nonzero quadratic residues modulo each odd prime factor of $e_1e_2e_3abc$. Then under certain conditions, the $2$-Selmer group and the Cassels pairing of the quadratic twist $E^{(n)}$ coincide with those of $\mathcal E^{(n)}$. As a corollary, $E^{(n)}$ has Mordell-Weil rank zero without order $4$ element in its Shafarevich-Tate group, if and only if these holds for $\mathcal E^{(n)}$. We also give some applications for the congruent elliptic curve.