用更新的全球重力模型确定三轴火星的转动惯量

IF 2.9 3区 地球科学
ChangYi Xu, Yan Jiang
{"title":"用更新的全球重力模型确定三轴火星的转动惯量","authors":"ChangYi Xu, Yan Jiang","doi":"10.26464/epp2023084","DOIUrl":null,"url":null,"abstract":"The principal moments of inertia (PMIs) with the principal axes are usually taken as the dynamic figure parameters of Mars; they can be deduced from satellite-observed degree-two gravitational potentials in recent global gravity models and from the dynamic ellipticities resulting from precession observations. These PMIs are natural and significant for the geodetic, geophysical, and geodynamic problems of Mars, which are functions of internal density distributions. In this study, a closed and concise formula for determining the PMIs of the entire planet and its core was developed based on the second invariants of gravity and a multipole expansion. We deduced the polar oblateness <italic>J</italic><sub>2</sub> and the equatorial ellipticity <italic>J</italic><sub>22</sub> of Mars to be 1.9566 × 10<sup>−3</sup> and 6.3106 × 10<sup>−5</sup>, respectively. The preferred principal moments of inertia of Mars are <italic>A</italic> = 2.66589 × 10<sup>36</sup> kg·m<sup>2</sup>, <italic>B</italic> = 2.66775 × 10<sup>36</sup> kg·m<sup>2</sup>, and <italic>C</italic> = 2.68125 × 10<sup>36</sup> kg·m<sup>2</sup>. These values indicate that Mar is slightly triaxial. The equatorial principal moment of inertia of the Martian core is 1.46008 × 10<sup>35</sup> kg·m<sup>2</sup>, accounting for ~5.47% of the planet’s PMI; this result is critical for investigating the density and size of the core of Mars, and the planet’s free core nutation.","PeriodicalId":45246,"journal":{"name":"Earth and Planetary Physics","volume":"9 1","pages":"0"},"PeriodicalIF":2.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determining the moment of inertia of triaxial Mars with updated global gravity models\",\"authors\":\"ChangYi Xu, Yan Jiang\",\"doi\":\"10.26464/epp2023084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The principal moments of inertia (PMIs) with the principal axes are usually taken as the dynamic figure parameters of Mars; they can be deduced from satellite-observed degree-two gravitational potentials in recent global gravity models and from the dynamic ellipticities resulting from precession observations. These PMIs are natural and significant for the geodetic, geophysical, and geodynamic problems of Mars, which are functions of internal density distributions. In this study, a closed and concise formula for determining the PMIs of the entire planet and its core was developed based on the second invariants of gravity and a multipole expansion. We deduced the polar oblateness <italic>J</italic><sub>2</sub> and the equatorial ellipticity <italic>J</italic><sub>22</sub> of Mars to be 1.9566 × 10<sup>−3</sup> and 6.3106 × 10<sup>−5</sup>, respectively. The preferred principal moments of inertia of Mars are <italic>A</italic> = 2.66589 × 10<sup>36</sup> kg·m<sup>2</sup>, <italic>B</italic> = 2.66775 × 10<sup>36</sup> kg·m<sup>2</sup>, and <italic>C</italic> = 2.68125 × 10<sup>36</sup> kg·m<sup>2</sup>. These values indicate that Mar is slightly triaxial. The equatorial principal moment of inertia of the Martian core is 1.46008 × 10<sup>35</sup> kg·m<sup>2</sup>, accounting for ~5.47% of the planet’s PMI; this result is critical for investigating the density and size of the core of Mars, and the planet’s free core nutation.\",\"PeriodicalId\":45246,\"journal\":{\"name\":\"Earth and Planetary Physics\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth and Planetary Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26464/epp2023084\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Planetary Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26464/epp2023084","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通常以具有主轴的主转动惯量(PMIs)作为火星的动态图形参数;它们可以从最近全球引力模型中卫星观测到的二级引力势和由进动观测得到的动态椭圆推断出来。这些pmi是自然的,对于火星的大地测量、地球物理和地球动力学问题具有重要意义,它们是内部密度分布的函数。在本研究中,基于引力第二不变量和多极膨胀,建立了一个确定整个行星及其核心的pmi的封闭简明公式。我们推导出火星的极扁率J2和赤道椭圆率J22分别为1.9566 × 10−3和6.3106 × 10−5。优选的火星主转动惯量为A = 2.66589 × 1036 kg·m2, B = 2.66775 × 1036 kg·m2, C = 2.68125 × 1036 kg·m2。这些值表明火星是略微三轴的。火星地核的赤道主转动惯量为1.46008 × 1035 kg·m2,约占火星总转动惯量的5.47%;这一结果对于研究火星核心的密度和大小以及火星的自由核心章动是至关重要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Determining the moment of inertia of triaxial Mars with updated global gravity models
The principal moments of inertia (PMIs) with the principal axes are usually taken as the dynamic figure parameters of Mars; they can be deduced from satellite-observed degree-two gravitational potentials in recent global gravity models and from the dynamic ellipticities resulting from precession observations. These PMIs are natural and significant for the geodetic, geophysical, and geodynamic problems of Mars, which are functions of internal density distributions. In this study, a closed and concise formula for determining the PMIs of the entire planet and its core was developed based on the second invariants of gravity and a multipole expansion. We deduced the polar oblateness J2 and the equatorial ellipticity J22 of Mars to be 1.9566 × 10−3 and 6.3106 × 10−5, respectively. The preferred principal moments of inertia of Mars are A = 2.66589 × 1036 kg·m2, B = 2.66775 × 1036 kg·m2, and C = 2.68125 × 1036 kg·m2. These values indicate that Mar is slightly triaxial. The equatorial principal moment of inertia of the Martian core is 1.46008 × 1035 kg·m2, accounting for ~5.47% of the planet’s PMI; this result is critical for investigating the density and size of the core of Mars, and the planet’s free core nutation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Earth and Planetary Physics
Earth and Planetary Physics GEOSCIENCES, MULTIDISCIPLINARY-
自引率
17.20%
发文量
174
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信