吲哚与仲胺(脂肪族)的有机催化 C2,3-H-氨基钙化反应†。

IF 4.6 1区 化学 Q1 CHEMISTRY, ORGANIC
Xiaoxiang Zhang, Chenrui Liu, Yingying Zhang, Fang Shen, Wanxing Wei, Zhuan Zhang and Taoyuan Liang
{"title":"吲哚与仲胺(脂肪族)的有机催化 C2,3-H-氨基钙化反应†。","authors":"Xiaoxiang Zhang, Chenrui Liu, Yingying Zhang, Fang Shen, Wanxing Wei, Zhuan Zhang and Taoyuan Liang","doi":"10.1039/D3QO01457F","DOIUrl":null,"url":null,"abstract":"<p >Catalysis by small organic molecules capable of binding and activating substrates through attractive, non-covalent interactions has emerged as a highly significant approach in the fields of organic and organometallic chemistry. Notably, the utilization of organo-chalconium catalysts has gained substantial attention, owing to their remarkable catalytic properties, within the realms of synthetic chemistry and small molecule catalysis. In this study, we present a direct C2,3–H difunctionalization of indoles with unactivated amines (secondary aliphatic amines, more than 66 examples, up to 95% isolated yield), facilitated by the organo-chalconium catalyst generated through the reaction of iodine and chalconium reagents. This exceptional strategy not only provides a formidable tool for the assembly of intricate molecular architectures, but also affords the ability to perform late-stage functionalization of natural products and pharmaceutical compounds. Moreover, this advancement imparts unparalleled potential for optimizing the bioactivity and pharmacokinetic properties of existing drugs.</p>","PeriodicalId":97,"journal":{"name":"Organic Chemistry Frontiers","volume":" 23","pages":" 5886-5894"},"PeriodicalIF":4.6000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Organo-catalyzed C2,3–H aminochalcogenation of indoles with secondary (aliphatic) amines†\",\"authors\":\"Xiaoxiang Zhang, Chenrui Liu, Yingying Zhang, Fang Shen, Wanxing Wei, Zhuan Zhang and Taoyuan Liang\",\"doi\":\"10.1039/D3QO01457F\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Catalysis by small organic molecules capable of binding and activating substrates through attractive, non-covalent interactions has emerged as a highly significant approach in the fields of organic and organometallic chemistry. Notably, the utilization of organo-chalconium catalysts has gained substantial attention, owing to their remarkable catalytic properties, within the realms of synthetic chemistry and small molecule catalysis. In this study, we present a direct C2,3–H difunctionalization of indoles with unactivated amines (secondary aliphatic amines, more than 66 examples, up to 95% isolated yield), facilitated by the organo-chalconium catalyst generated through the reaction of iodine and chalconium reagents. This exceptional strategy not only provides a formidable tool for the assembly of intricate molecular architectures, but also affords the ability to perform late-stage functionalization of natural products and pharmaceutical compounds. Moreover, this advancement imparts unparalleled potential for optimizing the bioactivity and pharmacokinetic properties of existing drugs.</p>\",\"PeriodicalId\":97,\"journal\":{\"name\":\"Organic Chemistry Frontiers\",\"volume\":\" 23\",\"pages\":\" 5886-5894\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic Chemistry Frontiers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2023/qo/d3qo01457f\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/qo/d3qo01457f","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一种由碘和chalconium试剂反应生成的有机chalconium催化剂促进吲哚与非活化胺的直接C2, 3-H双官能化反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Organo-catalyzed C2,3–H aminochalcogenation of indoles with secondary (aliphatic) amines†

Organo-catalyzed C2,3–H aminochalcogenation of indoles with secondary (aliphatic) amines†

Catalysis by small organic molecules capable of binding and activating substrates through attractive, non-covalent interactions has emerged as a highly significant approach in the fields of organic and organometallic chemistry. Notably, the utilization of organo-chalconium catalysts has gained substantial attention, owing to their remarkable catalytic properties, within the realms of synthetic chemistry and small molecule catalysis. In this study, we present a direct C2,3–H difunctionalization of indoles with unactivated amines (secondary aliphatic amines, more than 66 examples, up to 95% isolated yield), facilitated by the organo-chalconium catalyst generated through the reaction of iodine and chalconium reagents. This exceptional strategy not only provides a formidable tool for the assembly of intricate molecular architectures, but also affords the ability to perform late-stage functionalization of natural products and pharmaceutical compounds. Moreover, this advancement imparts unparalleled potential for optimizing the bioactivity and pharmacokinetic properties of existing drugs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Organic Chemistry Frontiers
Organic Chemistry Frontiers CHEMISTRY, ORGANIC-
CiteScore
7.90
自引率
11.10%
发文量
686
审稿时长
1 months
期刊介绍: Organic Chemistry Frontiers is an esteemed journal that publishes high-quality research across the field of organic chemistry. It places a significant emphasis on studies that contribute substantially to the field by introducing new or significantly improved protocols and methodologies. The journal covers a wide array of topics which include, but are not limited to, organic synthesis, the development of synthetic methodologies, catalysis, natural products, functional organic materials, supramolecular and macromolecular chemistry, as well as physical and computational organic chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信