伪单调变分不等式的修正Tseng算法与过去外推

IF 0.6 4区 数学 Q3 MATHEMATICS
Buris Tongnoi
{"title":"伪单调变分不等式的修正Tseng算法与过去外推","authors":"Buris Tongnoi","doi":"10.11650/tjm/230906","DOIUrl":null,"url":null,"abstract":"We present Tseng's forward-backward-forward method with extrapolation from the past for pseudo-monotone variational inequalities in Hilbert spaces. In addition, we propose a variable stepsize scheme of the extrapolated Tseng's algorithm governed by the operator which is pseudo-monotone, Lipschitz continuous and sequentially weak-to-weak continuous. We also investigate the algorithm's adaptive stepsize scenario, which arises when it is impossible to calculate the Lipschitz constant of a pseudo-monotone operator correctly. Finally, we prove a weak convergence theorem and conduct a numerical experiment to support it.","PeriodicalId":22176,"journal":{"name":"Taiwanese Journal of Mathematics","volume":"19 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Modified Tseng's Algorithm with Extrapolation from the Past for Pseudo-monotone Variational Inequalities\",\"authors\":\"Buris Tongnoi\",\"doi\":\"10.11650/tjm/230906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present Tseng's forward-backward-forward method with extrapolation from the past for pseudo-monotone variational inequalities in Hilbert spaces. In addition, we propose a variable stepsize scheme of the extrapolated Tseng's algorithm governed by the operator which is pseudo-monotone, Lipschitz continuous and sequentially weak-to-weak continuous. We also investigate the algorithm's adaptive stepsize scenario, which arises when it is impossible to calculate the Lipschitz constant of a pseudo-monotone operator correctly. Finally, we prove a weak convergence theorem and conduct a numerical experiment to support it.\",\"PeriodicalId\":22176,\"journal\":{\"name\":\"Taiwanese Journal of Mathematics\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Taiwanese Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11650/tjm/230906\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Taiwanese Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11650/tjm/230906","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了Tseng的前-后-前的方法与过去的外推在希尔伯特空间中的伪单调变分不等式。此外,我们提出了一种由伪单调、Lipschitz连续和顺序弱到弱连续算子控制的外推Tseng算法的变步长格式。我们还研究了该算法的自适应步长场景,当无法正确计算伪单调算子的Lipschitz常数时,会出现这种情况。最后,我们证明了一个弱收敛定理,并进行了数值实验来支持它。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Modified Tseng's Algorithm with Extrapolation from the Past for Pseudo-monotone Variational Inequalities
We present Tseng's forward-backward-forward method with extrapolation from the past for pseudo-monotone variational inequalities in Hilbert spaces. In addition, we propose a variable stepsize scheme of the extrapolated Tseng's algorithm governed by the operator which is pseudo-monotone, Lipschitz continuous and sequentially weak-to-weak continuous. We also investigate the algorithm's adaptive stepsize scenario, which arises when it is impossible to calculate the Lipschitz constant of a pseudo-monotone operator correctly. Finally, we prove a weak convergence theorem and conduct a numerical experiment to support it.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
35
审稿时长
3 months
期刊介绍: The Taiwanese Journal of Mathematics, published by the Mathematical Society of the Republic of China (Taiwan), is a continuation of the former Chinese Journal of Mathematics (1973-1996). It aims to publish original research papers and survey articles in all areas of mathematics. It will also occasionally publish proceedings of conferences co-organized by the Society. The purpose is to reflect the progress of the mathematical research in Taiwan and, by providing an international forum, to stimulate its further developments. The journal appears bimonthly each year beginning from 2008.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信