Katerina Karoni, Benedict Leimkuhler, Gabriel Stoltz
{"title":"摩擦自适应下降:一类基于动力学的优化方法","authors":"Katerina Karoni, Benedict Leimkuhler, Gabriel Stoltz","doi":"10.3934/jcd.2023007","DOIUrl":null,"url":null,"abstract":"We describe a family of descent algorithms which generalizes common existing schemes used in applications such as neural network training and more broadly for optimization of smooth functions–potentially for global optimization, or as a local optimization method to be deployed within global optimization schemes. By introducing an auxiliary degree of freedom we create a dynamical system with improved stability, reducing oscillatory modes and accelerating convergence to minima. The resulting algorithms are simple to implement, and convergence can be shown directly by Lyapunov's second method.Although this framework, which we refer to as friction-adaptive descent (FAD), is fairly general, we focus most of our attention on a specific variant: kinetic energy stabilization (which can be viewed as a zero-temperature Nosé–Hoover scheme with added dissipation in both physical and auxiliary variables), termed KFAD (kinetic FAD). To illustrate the flexibility of the FAD framework we consider several other methods. In certain asymptotic limits, these methods can be viewed as introducing cubic damping in various forms; they can be more efficient than linearly dissipated Hamiltonian dynamics (LDHD).We present details of the numerical methods and show convergence for both the continuous and discretized dynamics in the convex setting by constructing Lyapunov functions. The methods are tested using a toy model (the Rosenbrock function). We also demonstrate the methods for structural optimization for atomic clusters in Lennard–Jones and Morse potentials. The experiments show the relative efficiency and robustness of FAD in comparison to LDHD.","PeriodicalId":37526,"journal":{"name":"Journal of Computational Dynamics","volume":"242 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Friction-adaptive descent: A family of dynamics-based optimization methods\",\"authors\":\"Katerina Karoni, Benedict Leimkuhler, Gabriel Stoltz\",\"doi\":\"10.3934/jcd.2023007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe a family of descent algorithms which generalizes common existing schemes used in applications such as neural network training and more broadly for optimization of smooth functions–potentially for global optimization, or as a local optimization method to be deployed within global optimization schemes. By introducing an auxiliary degree of freedom we create a dynamical system with improved stability, reducing oscillatory modes and accelerating convergence to minima. The resulting algorithms are simple to implement, and convergence can be shown directly by Lyapunov's second method.Although this framework, which we refer to as friction-adaptive descent (FAD), is fairly general, we focus most of our attention on a specific variant: kinetic energy stabilization (which can be viewed as a zero-temperature Nosé–Hoover scheme with added dissipation in both physical and auxiliary variables), termed KFAD (kinetic FAD). To illustrate the flexibility of the FAD framework we consider several other methods. In certain asymptotic limits, these methods can be viewed as introducing cubic damping in various forms; they can be more efficient than linearly dissipated Hamiltonian dynamics (LDHD).We present details of the numerical methods and show convergence for both the continuous and discretized dynamics in the convex setting by constructing Lyapunov functions. The methods are tested using a toy model (the Rosenbrock function). We also demonstrate the methods for structural optimization for atomic clusters in Lennard–Jones and Morse potentials. The experiments show the relative efficiency and robustness of FAD in comparison to LDHD.\",\"PeriodicalId\":37526,\"journal\":{\"name\":\"Journal of Computational Dynamics\",\"volume\":\"242 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/jcd.2023007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/jcd.2023007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Friction-adaptive descent: A family of dynamics-based optimization methods
We describe a family of descent algorithms which generalizes common existing schemes used in applications such as neural network training and more broadly for optimization of smooth functions–potentially for global optimization, or as a local optimization method to be deployed within global optimization schemes. By introducing an auxiliary degree of freedom we create a dynamical system with improved stability, reducing oscillatory modes and accelerating convergence to minima. The resulting algorithms are simple to implement, and convergence can be shown directly by Lyapunov's second method.Although this framework, which we refer to as friction-adaptive descent (FAD), is fairly general, we focus most of our attention on a specific variant: kinetic energy stabilization (which can be viewed as a zero-temperature Nosé–Hoover scheme with added dissipation in both physical and auxiliary variables), termed KFAD (kinetic FAD). To illustrate the flexibility of the FAD framework we consider several other methods. In certain asymptotic limits, these methods can be viewed as introducing cubic damping in various forms; they can be more efficient than linearly dissipated Hamiltonian dynamics (LDHD).We present details of the numerical methods and show convergence for both the continuous and discretized dynamics in the convex setting by constructing Lyapunov functions. The methods are tested using a toy model (the Rosenbrock function). We also demonstrate the methods for structural optimization for atomic clusters in Lennard–Jones and Morse potentials. The experiments show the relative efficiency and robustness of FAD in comparison to LDHD.
期刊介绍:
JCD is focused on the intersection of computation with deterministic and stochastic dynamics. The mission of the journal is to publish papers that explore new computational methods for analyzing dynamic problems or use novel dynamical methods to improve computation. The subject matter of JCD includes both fundamental mathematical contributions and applications to problems from science and engineering. A non-exhaustive list of topics includes * Computation of phase-space structures and bifurcations * Multi-time-scale methods * Structure-preserving integration * Nonlinear and stochastic model reduction * Set-valued numerical techniques * Network and distributed dynamics JCD includes both original research and survey papers that give a detailed and illuminating treatment of an important area of current interest. The editorial board of JCD consists of world-leading researchers from mathematics, engineering, and science, all of whom are experts in both computational methods and the theory of dynamical systems.