二阶Calabi-Yau算子

Pub Date : 2023-10-10 DOI:10.1007/s10801-023-01272-0
Gert Almkvist, Duco van Straten
{"title":"二阶Calabi-Yau算子","authors":"Gert Almkvist, Duco van Straten","doi":"10.1007/s10801-023-01272-0","DOIUrl":null,"url":null,"abstract":"Abstract We show that the solutions to the equations, defining the so-called Calabi–Yau condition for fourth-order operators of degree two, define a variety that consists of ten irreducible components. These can be described completely in parametric form, but only two of the components seem to admit arithmetically interesting operators. We include a description of the 69 essentially distinct fourth-order Calabi–Yau operators of degree two that are presently known to us.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Calabi–Yau operators of degree two\",\"authors\":\"Gert Almkvist, Duco van Straten\",\"doi\":\"10.1007/s10801-023-01272-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We show that the solutions to the equations, defining the so-called Calabi–Yau condition for fourth-order operators of degree two, define a variety that consists of ten irreducible components. These can be described completely in parametric form, but only two of the components seem to admit arithmetically interesting operators. We include a description of the 69 essentially distinct fourth-order Calabi–Yau operators of degree two that are presently known to us.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10801-023-01272-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10801-023-01272-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

摘要我们证明了二阶四阶算子的Calabi-Yau条件的解定义了一个由十个不可约分量组成的变量。这些可以用参数形式完全描述,但只有两个分量似乎允许有算术上有趣的运算符。我们包括69个本质上不同的四阶二阶Calabi-Yau算子的描述,这些算子是我们目前已知的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Calabi–Yau operators of degree two
Abstract We show that the solutions to the equations, defining the so-called Calabi–Yau condition for fourth-order operators of degree two, define a variety that consists of ten irreducible components. These can be described completely in parametric form, but only two of the components seem to admit arithmetically interesting operators. We include a description of the 69 essentially distinct fourth-order Calabi–Yau operators of degree two that are presently known to us.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信