{"title":"连续函数格上的凸单调半群","authors":"Robert Denk, Michael Kupper, Max Nendel","doi":"10.4171/prims/59-2-4","DOIUrl":null,"url":null,"abstract":"We consider convex monotone $C\\_0$-semigroups on a Banach lattice, which is assumed to be a Riesz subspace of a $\\sigma$-Dedekind complete Banach lattice. Typical examples include the space of all bounded uniformly continuous functions and the space of all continuous functions vanishing at infinity. We show that the domain of the classical generator of a convex semigroup is typically not invariant. Therefore, we propose alternative versions for the domain, such as the monotone domain and the Lipschitz set, for which we prove invariance under the semigroup. As a main result, we obtain the uniqueness of the semigroup in terms of an extended version of the generator. The results are illustrated with several examples related to Hamilton–Jacobi–Bellman equations, including nonlinear versions of the shift semigroup and the heat equation. In particular, we determine their symmetric Lipschitz sets, which are invariant and allow us to define the generators in a weak sense.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Convex Monotone Semigroups on Lattices of Continuous Functions\",\"authors\":\"Robert Denk, Michael Kupper, Max Nendel\",\"doi\":\"10.4171/prims/59-2-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider convex monotone $C\\\\_0$-semigroups on a Banach lattice, which is assumed to be a Riesz subspace of a $\\\\sigma$-Dedekind complete Banach lattice. Typical examples include the space of all bounded uniformly continuous functions and the space of all continuous functions vanishing at infinity. We show that the domain of the classical generator of a convex semigroup is typically not invariant. Therefore, we propose alternative versions for the domain, such as the monotone domain and the Lipschitz set, for which we prove invariance under the semigroup. As a main result, we obtain the uniqueness of the semigroup in terms of an extended version of the generator. The results are illustrated with several examples related to Hamilton–Jacobi–Bellman equations, including nonlinear versions of the shift semigroup and the heat equation. In particular, we determine their symmetric Lipschitz sets, which are invariant and allow us to define the generators in a weak sense.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/prims/59-2-4\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/prims/59-2-4","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Convex Monotone Semigroups on Lattices of Continuous Functions
We consider convex monotone $C\_0$-semigroups on a Banach lattice, which is assumed to be a Riesz subspace of a $\sigma$-Dedekind complete Banach lattice. Typical examples include the space of all bounded uniformly continuous functions and the space of all continuous functions vanishing at infinity. We show that the domain of the classical generator of a convex semigroup is typically not invariant. Therefore, we propose alternative versions for the domain, such as the monotone domain and the Lipschitz set, for which we prove invariance under the semigroup. As a main result, we obtain the uniqueness of the semigroup in terms of an extended version of the generator. The results are illustrated with several examples related to Hamilton–Jacobi–Bellman equations, including nonlinear versions of the shift semigroup and the heat equation. In particular, we determine their symmetric Lipschitz sets, which are invariant and allow us to define the generators in a weak sense.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.