{"title":"伪barsotti - tate表象的潜在对角性","authors":"Robin Bartlett","doi":"10.5802/jtnb.1248","DOIUrl":null,"url":null,"abstract":"Previous work of Kisin and Gee proves potential diagonalisability of two dimensional Barsotti–Tate representations of the Galois group of a finite extension K/ℚ p . In this paper we build upon their work by relaxing the Barsotti–Tate condition to one we call pseudo-Barsotti–Tate (which means that for certain embeddings κ:K→ℚ ¯ p we allow the κ-Hodge–Tate weights to be contained in [0,p] rather than [0,1]).","PeriodicalId":48896,"journal":{"name":"Journal De Theorie Des Nombres De Bordeaux","volume":"24 1","pages":"0"},"PeriodicalIF":0.3000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Potential diagonalisability of pseudo-Barsotti–Tate representations\",\"authors\":\"Robin Bartlett\",\"doi\":\"10.5802/jtnb.1248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Previous work of Kisin and Gee proves potential diagonalisability of two dimensional Barsotti–Tate representations of the Galois group of a finite extension K/ℚ p . In this paper we build upon their work by relaxing the Barsotti–Tate condition to one we call pseudo-Barsotti–Tate (which means that for certain embeddings κ:K→ℚ ¯ p we allow the κ-Hodge–Tate weights to be contained in [0,p] rather than [0,1]).\",\"PeriodicalId\":48896,\"journal\":{\"name\":\"Journal De Theorie Des Nombres De Bordeaux\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal De Theorie Des Nombres De Bordeaux\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/jtnb.1248\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal De Theorie Des Nombres De Bordeaux","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/jtnb.1248","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Potential diagonalisability of pseudo-Barsotti–Tate representations
Previous work of Kisin and Gee proves potential diagonalisability of two dimensional Barsotti–Tate representations of the Galois group of a finite extension K/ℚ p . In this paper we build upon their work by relaxing the Barsotti–Tate condition to one we call pseudo-Barsotti–Tate (which means that for certain embeddings κ:K→ℚ ¯ p we allow the κ-Hodge–Tate weights to be contained in [0,p] rather than [0,1]).