伪barsotti - tate表象的潜在对角性

IF 0.3 4区 数学 Q4 MATHEMATICS
Robin Bartlett
{"title":"伪barsotti - tate表象的潜在对角性","authors":"Robin Bartlett","doi":"10.5802/jtnb.1248","DOIUrl":null,"url":null,"abstract":"Previous work of Kisin and Gee proves potential diagonalisability of two dimensional Barsotti–Tate representations of the Galois group of a finite extension K/ℚ p . In this paper we build upon their work by relaxing the Barsotti–Tate condition to one we call pseudo-Barsotti–Tate (which means that for certain embeddings κ:K→ℚ ¯ p we allow the κ-Hodge–Tate weights to be contained in [0,p] rather than [0,1]).","PeriodicalId":48896,"journal":{"name":"Journal De Theorie Des Nombres De Bordeaux","volume":"24 1","pages":"0"},"PeriodicalIF":0.3000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Potential diagonalisability of pseudo-Barsotti–Tate representations\",\"authors\":\"Robin Bartlett\",\"doi\":\"10.5802/jtnb.1248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Previous work of Kisin and Gee proves potential diagonalisability of two dimensional Barsotti–Tate representations of the Galois group of a finite extension K/ℚ p . In this paper we build upon their work by relaxing the Barsotti–Tate condition to one we call pseudo-Barsotti–Tate (which means that for certain embeddings κ:K→ℚ ¯ p we allow the κ-Hodge–Tate weights to be contained in [0,p] rather than [0,1]).\",\"PeriodicalId\":48896,\"journal\":{\"name\":\"Journal De Theorie Des Nombres De Bordeaux\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal De Theorie Des Nombres De Bordeaux\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/jtnb.1248\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal De Theorie Des Nombres De Bordeaux","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/jtnb.1248","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

Kisin和Gee先前的工作证明了有限扩展K/ π的伽罗瓦群的二维Barsotti-Tate表示的潜在对角性。在本文中,我们通过将Barsotti-Tate条件放宽为伪Barsotti-Tate条件(这意味着对于某些嵌入κ:K→π¯p,我们允许κ- hodge - tate权值包含在[0,p]而不是[0,1]中)来建立他们的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Potential diagonalisability of pseudo-Barsotti–Tate representations
Previous work of Kisin and Gee proves potential diagonalisability of two dimensional Barsotti–Tate representations of the Galois group of a finite extension K/ℚ p . In this paper we build upon their work by relaxing the Barsotti–Tate condition to one we call pseudo-Barsotti–Tate (which means that for certain embeddings κ:K→ℚ ¯ p we allow the κ-Hodge–Tate weights to be contained in [0,p] rather than [0,1]).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
35
期刊介绍: The Journal de Théorie des Nombres de Bordeaux publishes original papers on number theory and related topics (not published elsewhere).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信