关于Enriques曲面自同构的特征多项式

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Simon Brandhorst, Sławomir Rams, Ichiro Shimada
{"title":"关于Enriques曲面自同构的特征多项式","authors":"Simon Brandhorst, Sławomir Rams, Ichiro Shimada","doi":"10.4171/prims/59-3-7","DOIUrl":null,"url":null,"abstract":"Let $f$ be an automorphism of a complex Enriques surface $Y$ and let $p\\_f$ denote the characteristic polynomial of the isometry $f^\\*$ of the numerical Néron–Severi lattice of $Y$ induced by $f$. We combine a modification of McMullen’s method with Borcherds’ method to prove that the modulo-$2$ reduction $(p\\_f(x) \\bmod 2)$ is a product of modulo-$2$ reductions of (some of) the five cyclotomic polynomials $\\Phi\\_m$, where $m \\leq 9$ and $m$ is odd. We study Enriques surfaces that realizevmodulo-$2$ reductions of $\\Phi\\_7$, $\\Phi\\_9$ and show that each of the five polynomials $(\\Phi\\_m(x) \\bmod 2)$ is a factor of the modulo-$2$ reduction $(p\\_f(x) \\bmod 2)$ for a complex Enriques surface.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On Characteristic Polynomials of Automorphisms of Enriques Surfaces\",\"authors\":\"Simon Brandhorst, Sławomir Rams, Ichiro Shimada\",\"doi\":\"10.4171/prims/59-3-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $f$ be an automorphism of a complex Enriques surface $Y$ and let $p\\\\_f$ denote the characteristic polynomial of the isometry $f^\\\\*$ of the numerical Néron–Severi lattice of $Y$ induced by $f$. We combine a modification of McMullen’s method with Borcherds’ method to prove that the modulo-$2$ reduction $(p\\\\_f(x) \\\\bmod 2)$ is a product of modulo-$2$ reductions of (some of) the five cyclotomic polynomials $\\\\Phi\\\\_m$, where $m \\\\leq 9$ and $m$ is odd. We study Enriques surfaces that realizevmodulo-$2$ reductions of $\\\\Phi\\\\_7$, $\\\\Phi\\\\_9$ and show that each of the five polynomials $(\\\\Phi\\\\_m(x) \\\\bmod 2)$ is a factor of the modulo-$2$ reduction $(p\\\\_f(x) \\\\bmod 2)$ for a complex Enriques surface.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/prims/59-3-7\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/prims/59-3-7","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

设$f$为复Enriques曲面$Y$的自同构,设$p\_f$为$f$诱导的$Y$的数值nsamron - severi格的等长$f^\*$的特征多项式。我们将McMullen方法的修正与Borcherds方法结合起来,证明了模$2$约简$(p\_f(x) \bmod 2)$是五个分环多项式$\Phi\_m$的(某些)模$2$约简的乘积,其中$m \leq 9$和$m$是奇数。我们研究了实现$\Phi\_7$, $\Phi\_9$的模- $2$约简的Enriques曲面,并表明对于复杂的Enriques曲面,五个多项式$(\Phi\_m(x) \bmod 2)$中的每一个都是模- $2$约简$(p\_f(x) \bmod 2)$的一个因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Characteristic Polynomials of Automorphisms of Enriques Surfaces
Let $f$ be an automorphism of a complex Enriques surface $Y$ and let $p\_f$ denote the characteristic polynomial of the isometry $f^\*$ of the numerical Néron–Severi lattice of $Y$ induced by $f$. We combine a modification of McMullen’s method with Borcherds’ method to prove that the modulo-$2$ reduction $(p\_f(x) \bmod 2)$ is a product of modulo-$2$ reductions of (some of) the five cyclotomic polynomials $\Phi\_m$, where $m \leq 9$ and $m$ is odd. We study Enriques surfaces that realizevmodulo-$2$ reductions of $\Phi\_7$, $\Phi\_9$ and show that each of the five polynomials $(\Phi\_m(x) \bmod 2)$ is a factor of the modulo-$2$ reduction $(p\_f(x) \bmod 2)$ for a complex Enriques surface.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信