{"title":"关于Enriques曲面自同构的特征多项式","authors":"Simon Brandhorst, Sławomir Rams, Ichiro Shimada","doi":"10.4171/prims/59-3-7","DOIUrl":null,"url":null,"abstract":"Let $f$ be an automorphism of a complex Enriques surface $Y$ and let $p\\_f$ denote the characteristic polynomial of the isometry $f^\\*$ of the numerical Néron–Severi lattice of $Y$ induced by $f$. We combine a modification of McMullen’s method with Borcherds’ method to prove that the modulo-$2$ reduction $(p\\_f(x) \\bmod 2)$ is a product of modulo-$2$ reductions of (some of) the five cyclotomic polynomials $\\Phi\\_m$, where $m \\leq 9$ and $m$ is odd. We study Enriques surfaces that realizevmodulo-$2$ reductions of $\\Phi\\_7$, $\\Phi\\_9$ and show that each of the five polynomials $(\\Phi\\_m(x) \\bmod 2)$ is a factor of the modulo-$2$ reduction $(p\\_f(x) \\bmod 2)$ for a complex Enriques surface.","PeriodicalId":54528,"journal":{"name":"Publications of the Research Institute for Mathematical Sciences","volume":"225 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On Characteristic Polynomials of Automorphisms of Enriques Surfaces\",\"authors\":\"Simon Brandhorst, Sławomir Rams, Ichiro Shimada\",\"doi\":\"10.4171/prims/59-3-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $f$ be an automorphism of a complex Enriques surface $Y$ and let $p\\\\_f$ denote the characteristic polynomial of the isometry $f^\\\\*$ of the numerical Néron–Severi lattice of $Y$ induced by $f$. We combine a modification of McMullen’s method with Borcherds’ method to prove that the modulo-$2$ reduction $(p\\\\_f(x) \\\\bmod 2)$ is a product of modulo-$2$ reductions of (some of) the five cyclotomic polynomials $\\\\Phi\\\\_m$, where $m \\\\leq 9$ and $m$ is odd. We study Enriques surfaces that realizevmodulo-$2$ reductions of $\\\\Phi\\\\_7$, $\\\\Phi\\\\_9$ and show that each of the five polynomials $(\\\\Phi\\\\_m(x) \\\\bmod 2)$ is a factor of the modulo-$2$ reduction $(p\\\\_f(x) \\\\bmod 2)$ for a complex Enriques surface.\",\"PeriodicalId\":54528,\"journal\":{\"name\":\"Publications of the Research Institute for Mathematical Sciences\",\"volume\":\"225 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Publications of the Research Institute for Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/prims/59-3-7\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications of the Research Institute for Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/prims/59-3-7","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
On Characteristic Polynomials of Automorphisms of Enriques Surfaces
Let $f$ be an automorphism of a complex Enriques surface $Y$ and let $p\_f$ denote the characteristic polynomial of the isometry $f^\*$ of the numerical Néron–Severi lattice of $Y$ induced by $f$. We combine a modification of McMullen’s method with Borcherds’ method to prove that the modulo-$2$ reduction $(p\_f(x) \bmod 2)$ is a product of modulo-$2$ reductions of (some of) the five cyclotomic polynomials $\Phi\_m$, where $m \leq 9$ and $m$ is odd. We study Enriques surfaces that realizevmodulo-$2$ reductions of $\Phi\_7$, $\Phi\_9$ and show that each of the five polynomials $(\Phi\_m(x) \bmod 2)$ is a factor of the modulo-$2$ reduction $(p\_f(x) \bmod 2)$ for a complex Enriques surface.
期刊介绍:
The aim of the Publications of the Research Institute for Mathematical Sciences (PRIMS) is to publish original research papers in the mathematical sciences.