阿贝尔热带覆盖物

IF 0.6 3区 数学 Q3 MATHEMATICS
Yoav Len, Martin Ulirsch, Dmitry Zakharov
{"title":"阿贝尔热带覆盖物","authors":"Yoav Len, Martin Ulirsch, Dmitry Zakharov","doi":"10.1017/s0305004123000518","DOIUrl":null,"url":null,"abstract":"Abstract Let $\\mathfrak{A}$ be a finite abelian group. In this paper, we classify harmonic $\\mathfrak{A}$ -covers of a tropical curve $\\Gamma$ (which allow dilation along edges and at vertices) in terms of the cohomology group of a suitably defined sheaf on $\\Gamma$ . We give a realisability criterion for harmonic $\\mathfrak{A}$ -covers by patching local monodromy data in an extended homology group on $\\Gamma$ . As an explicit example, we work out the case $\\mathfrak{A}=\\mathbb{Z}/p\\mathbb{Z}$ and explain how realisability for such covers is related to the nowhere-zero flow problem from graph theory.","PeriodicalId":18320,"journal":{"name":"Mathematical Proceedings of the Cambridge Philosophical Society","volume":"51 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Abelian tropical covers\",\"authors\":\"Yoav Len, Martin Ulirsch, Dmitry Zakharov\",\"doi\":\"10.1017/s0305004123000518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let $\\\\mathfrak{A}$ be a finite abelian group. In this paper, we classify harmonic $\\\\mathfrak{A}$ -covers of a tropical curve $\\\\Gamma$ (which allow dilation along edges and at vertices) in terms of the cohomology group of a suitably defined sheaf on $\\\\Gamma$ . We give a realisability criterion for harmonic $\\\\mathfrak{A}$ -covers by patching local monodromy data in an extended homology group on $\\\\Gamma$ . As an explicit example, we work out the case $\\\\mathfrak{A}=\\\\mathbb{Z}/p\\\\mathbb{Z}$ and explain how realisability for such covers is related to the nowhere-zero flow problem from graph theory.\",\"PeriodicalId\":18320,\"journal\":{\"name\":\"Mathematical Proceedings of the Cambridge Philosophical Society\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Proceedings of the Cambridge Philosophical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/s0305004123000518\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Cambridge Philosophical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0305004123000518","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

摘要

摘要设$\mathfrak{A}$是一个有限阿贝尔群。本文将热带曲线$\Gamma$(允许沿边和顶点膨胀)的调和$\mathfrak{A}$ -盖根据$\Gamma$上适当定义的轴的上同群进行分类。通过对$\Gamma$上的扩展同调群上的局部单态数据进行修补,给出了调和$\mathfrak{a}$ -盖的可实现性判据。作为一个明确的例子,我们计算了$\mathfrak{A}=\mathbb{Z}/p\mathbb{Z}$的情况,并解释了这些覆盖物的可实现性如何与图论中的无处零流问题相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Abelian tropical covers
Abstract Let $\mathfrak{A}$ be a finite abelian group. In this paper, we classify harmonic $\mathfrak{A}$ -covers of a tropical curve $\Gamma$ (which allow dilation along edges and at vertices) in terms of the cohomology group of a suitably defined sheaf on $\Gamma$ . We give a realisability criterion for harmonic $\mathfrak{A}$ -covers by patching local monodromy data in an extended homology group on $\Gamma$ . As an explicit example, we work out the case $\mathfrak{A}=\mathbb{Z}/p\mathbb{Z}$ and explain how realisability for such covers is related to the nowhere-zero flow problem from graph theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Papers which advance knowledge of mathematics, either pure or applied, will be considered by the Editorial Committee. The work must be original and not submitted to another journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信