双U型分环谐振器的二次谐波增强效应

IF 1.8 4区 物理与天体物理 Q3 OPTICS
Jiahao Hu, chaoying zhao
{"title":"双U型分环谐振器的二次谐波增强效应","authors":"Jiahao Hu, chaoying zhao","doi":"10.1364/josab.497381","DOIUrl":null,"url":null,"abstract":"Frequency multiplication plays an important role in spectrum research; therefore, in order to achieve enhancement of the second harmonic, the internal structure of nonlinear plasma metamaterial cells becomes more and more complex. The original harmonic oscillator model only regards the cell as a single harmonic oscillator, and a complete understanding of the physical processes involved in harmonic generation experiments in plasmonics is still lacking. In the case in which the plasma structure in a single cell becomes more and more complex, it is not reasonable to regard the entire cell as a single nonlinear oscillator. So expanding the harmonic oscillator model becomes more significant. In this paper, the internal structure of the proposed double U split-ring resonators (DU-SRRs) is regarded as two harmonic oscillators with different resonant frequencies, and the generation process of the enhanced second harmonic is explained by the resonance theorem. The second and third order nonlinear coefficients of the metamaterial are calculated, and the theoretical second harmonic conversion efficiency is obtained by using the second order nonlinear coefficients. Compared with the simulation results of the DU-SRR based on the split-ring resonator, we validate this classical theory as well as the associated numerical algorithm. The ability of the DU-SRR to enhance the second harmonic is proved, and the physical changes inside the cell and the reasons for the enhancement are explained in detail. This method can be used to analyze the nonlinear phenomena in metamaterials with complex cell structures.","PeriodicalId":17280,"journal":{"name":"Journal of The Optical Society of America B-optical Physics","volume":"46 1 1","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Second harmonic enhancement effect in the double U split-ring resonators\",\"authors\":\"Jiahao Hu, chaoying zhao\",\"doi\":\"10.1364/josab.497381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Frequency multiplication plays an important role in spectrum research; therefore, in order to achieve enhancement of the second harmonic, the internal structure of nonlinear plasma metamaterial cells becomes more and more complex. The original harmonic oscillator model only regards the cell as a single harmonic oscillator, and a complete understanding of the physical processes involved in harmonic generation experiments in plasmonics is still lacking. In the case in which the plasma structure in a single cell becomes more and more complex, it is not reasonable to regard the entire cell as a single nonlinear oscillator. So expanding the harmonic oscillator model becomes more significant. In this paper, the internal structure of the proposed double U split-ring resonators (DU-SRRs) is regarded as two harmonic oscillators with different resonant frequencies, and the generation process of the enhanced second harmonic is explained by the resonance theorem. The second and third order nonlinear coefficients of the metamaterial are calculated, and the theoretical second harmonic conversion efficiency is obtained by using the second order nonlinear coefficients. Compared with the simulation results of the DU-SRR based on the split-ring resonator, we validate this classical theory as well as the associated numerical algorithm. The ability of the DU-SRR to enhance the second harmonic is proved, and the physical changes inside the cell and the reasons for the enhancement are explained in detail. This method can be used to analyze the nonlinear phenomena in metamaterials with complex cell structures.\",\"PeriodicalId\":17280,\"journal\":{\"name\":\"Journal of The Optical Society of America B-optical Physics\",\"volume\":\"46 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Optical Society of America B-optical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/josab.497381\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Optical Society of America B-optical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/josab.497381","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

频率倍增在频谱研究中占有重要地位;因此,为了实现二次谐波的增强,非线性等离子体超材料电池的内部结构变得越来越复杂。原有的谐振子模型仅将细胞视为单个谐振子,对等离子体中谐波产生实验所涉及的物理过程仍缺乏完整的认识。当单个细胞内的等离子体结构变得越来越复杂时,将整个细胞视为单个非线性振荡器是不合理的。因此,扩展谐振子模型就显得尤为重要。本文将所提出的双U裂环谐振器(DU-SRRs)的内部结构视为两个谐振频率不同的谐振子,并用共振定理解释了增强二次谐波的产生过程。计算了超材料的二阶和三阶非线性系数,并利用二阶非线性系数计算了理论二次谐波转换效率。通过与基于劈环谐振器的DU-SRR的仿真结果对比,验证了这一经典理论以及相关的数值算法。证明了DU-SRR增强二次谐波的能力,并详细说明了电池内部的物理变化和增强的原因。该方法可用于分析具有复杂胞结构的超材料中的非线性现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Second harmonic enhancement effect in the double U split-ring resonators
Frequency multiplication plays an important role in spectrum research; therefore, in order to achieve enhancement of the second harmonic, the internal structure of nonlinear plasma metamaterial cells becomes more and more complex. The original harmonic oscillator model only regards the cell as a single harmonic oscillator, and a complete understanding of the physical processes involved in harmonic generation experiments in plasmonics is still lacking. In the case in which the plasma structure in a single cell becomes more and more complex, it is not reasonable to regard the entire cell as a single nonlinear oscillator. So expanding the harmonic oscillator model becomes more significant. In this paper, the internal structure of the proposed double U split-ring resonators (DU-SRRs) is regarded as two harmonic oscillators with different resonant frequencies, and the generation process of the enhanced second harmonic is explained by the resonance theorem. The second and third order nonlinear coefficients of the metamaterial are calculated, and the theoretical second harmonic conversion efficiency is obtained by using the second order nonlinear coefficients. Compared with the simulation results of the DU-SRR based on the split-ring resonator, we validate this classical theory as well as the associated numerical algorithm. The ability of the DU-SRR to enhance the second harmonic is proved, and the physical changes inside the cell and the reasons for the enhancement are explained in detail. This method can be used to analyze the nonlinear phenomena in metamaterials with complex cell structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.00
自引率
5.30%
发文量
374
审稿时长
2.1 months
期刊介绍: The Journal of the Optical Society of America B (JOSA B) is a general optics research journal that complements JOSA A. It emphasizes scientific research on the fundamentals of the interaction of light with matter such as quantum optics, nonlinear optics, and laser physics. Topics include: Advanced Instrumentation and Measurements Fiber Optics and Fiber Lasers Lasers and Other Light Sources from THz to XUV Light-Induced Phenomena Nonlinear and High Field Optics Optical Materials Optics Modes and Structured Light Optomechanics Metamaterials Nanomaterials Photonics and Semiconductor Optics Physical Optics Plasmonics Quantum Optics and Entanglement Quantum Key Distribution Spectroscopy and Atomic or Molecular Optics Superresolution and Advanced Imaging Surface Optics Ultrafast Optical Phenomena Wave Guiding and Optical Confinement JOSA B considers original research articles, feature issue contributions, invited reviews and tutorials, and comments on published articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信