Ping Li, Xian-Xian Ji, Ming-Yao Xu, Yu-Long Liu, Liu Yang
{"title":"基于1,8-萘酰亚胺的多功能荧光探针用于检测Co2+, F−和CN−","authors":"Ping Li, Xian-Xian Ji, Ming-Yao Xu, Yu-Long Liu, Liu Yang","doi":"10.3390/inorganics11070265","DOIUrl":null,"url":null,"abstract":"Cations and anions are indispensable resources for the development of nature and modern industry and agriculture, and exploring more efficient technology to monitor them is urgently needed. A multifunctional fluorescent probe based on 1,8-naphthalimide, N-(2-thiophenhydrazide)acetyl-4-morpholine-1,8-naphthalimide (TMN), was successfully designed and synthesized for the detection of Co2+, F−, and CN−, with N-carboxymethyl-4-morpholine-1,8-naphthalimide and thiophene-2-carbohydrazide as starting materials. TMN displayed superior stability in MeCN with an “on–off” mode towards Co2+, F−, and CN− by the naked eye. The linear response ranges of TMN were 0–3 and 4–19 μM with a detection limit of 0.21 μM for detecting Co2+, 0–5 and 5–22 μM with a detection limit of 0.36 μM for F−, and 0–10 and 10–25 μM with a detection limit of 0.49 μM for CN−. TMN could also recognize Co2+, F−, and CN− in real samples. Finally, the possible sensing mechanisms of TMN for detecting Co2+, F−, and CN− were deeply investigated. These results implied that TMN could be a potential chemosensor for monitoring metal cations and anions sensitively and selectively and could be used in real sample detection.","PeriodicalId":13580,"journal":{"name":"Inorganics (Basel)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Multifunctional Fluorescent Probe Based on 1,8-Naphthalimide for the Detection of Co2+, F−, and CN−\",\"authors\":\"Ping Li, Xian-Xian Ji, Ming-Yao Xu, Yu-Long Liu, Liu Yang\",\"doi\":\"10.3390/inorganics11070265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cations and anions are indispensable resources for the development of nature and modern industry and agriculture, and exploring more efficient technology to monitor them is urgently needed. A multifunctional fluorescent probe based on 1,8-naphthalimide, N-(2-thiophenhydrazide)acetyl-4-morpholine-1,8-naphthalimide (TMN), was successfully designed and synthesized for the detection of Co2+, F−, and CN−, with N-carboxymethyl-4-morpholine-1,8-naphthalimide and thiophene-2-carbohydrazide as starting materials. TMN displayed superior stability in MeCN with an “on–off” mode towards Co2+, F−, and CN− by the naked eye. The linear response ranges of TMN were 0–3 and 4–19 μM with a detection limit of 0.21 μM for detecting Co2+, 0–5 and 5–22 μM with a detection limit of 0.36 μM for F−, and 0–10 and 10–25 μM with a detection limit of 0.49 μM for CN−. TMN could also recognize Co2+, F−, and CN− in real samples. Finally, the possible sensing mechanisms of TMN for detecting Co2+, F−, and CN− were deeply investigated. These results implied that TMN could be a potential chemosensor for monitoring metal cations and anions sensitively and selectively and could be used in real sample detection.\",\"PeriodicalId\":13580,\"journal\":{\"name\":\"Inorganics (Basel)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganics (Basel)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/inorganics11070265\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganics (Basel)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/inorganics11070265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Multifunctional Fluorescent Probe Based on 1,8-Naphthalimide for the Detection of Co2+, F−, and CN−
Cations and anions are indispensable resources for the development of nature and modern industry and agriculture, and exploring more efficient technology to monitor them is urgently needed. A multifunctional fluorescent probe based on 1,8-naphthalimide, N-(2-thiophenhydrazide)acetyl-4-morpholine-1,8-naphthalimide (TMN), was successfully designed and synthesized for the detection of Co2+, F−, and CN−, with N-carboxymethyl-4-morpholine-1,8-naphthalimide and thiophene-2-carbohydrazide as starting materials. TMN displayed superior stability in MeCN with an “on–off” mode towards Co2+, F−, and CN− by the naked eye. The linear response ranges of TMN were 0–3 and 4–19 μM with a detection limit of 0.21 μM for detecting Co2+, 0–5 and 5–22 μM with a detection limit of 0.36 μM for F−, and 0–10 and 10–25 μM with a detection limit of 0.49 μM for CN−. TMN could also recognize Co2+, F−, and CN− in real samples. Finally, the possible sensing mechanisms of TMN for detecting Co2+, F−, and CN− were deeply investigated. These results implied that TMN could be a potential chemosensor for monitoring metal cations and anions sensitively and selectively and could be used in real sample detection.