{"title":"具有Besov随机树先验的椭圆偏微分方程的多层蒙特卡罗有限元","authors":"Christoph Schwab, Andreas Stein","doi":"10.1007/s40072-023-00313-w","DOIUrl":null,"url":null,"abstract":"Abstract We develop a multilevel Monte Carlo (MLMC)-FEM algorithm for linear, elliptic diffusion problems in polytopal domain $${\\mathcal {D}}\\subset {\\mathbb {R}}^d$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>D</mml:mi> <mml:mo>⊂</mml:mo> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msup> </mml:mrow> </mml:math> , with Besov-tree random coefficients. This is to say that the logarithms of the diffusion coefficients are sampled from so-called Besov-tree priors, which have recently been proposed to model data for fractal phenomena in science and engineering. Numerical analysis of the fully discrete FEM for the elliptic PDE includes quadrature approximation and must account for (a) nonuniform pathwise upper and lower coefficient bounds, and for (b) low path-regularity of the Besov-tree coefficients. Admissible non-parametric random coefficients correspond to random functions exhibiting singularities on random fractals with tunable fractal dimension, but involve no a-priori specification of the fractal geometry of singular supports of sample paths. Optimal complexity and convergence rate estimates for quantities of interest and for their second moments are proved. A convergence analysis for MLMC-FEM is performed which yields choices of the algorithmic steering parameters for efficient implementation. A complexity (“error vs work”) analysis of the MLMC-FEM approximations is provided.","PeriodicalId":48569,"journal":{"name":"Stochastics and Partial Differential Equations-Analysis and Computations","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multilevel Monte Carlo FEM for elliptic PDEs with Besov random tree priors\",\"authors\":\"Christoph Schwab, Andreas Stein\",\"doi\":\"10.1007/s40072-023-00313-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We develop a multilevel Monte Carlo (MLMC)-FEM algorithm for linear, elliptic diffusion problems in polytopal domain $${\\\\mathcal {D}}\\\\subset {\\\\mathbb {R}}^d$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>D</mml:mi> <mml:mo>⊂</mml:mo> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msup> </mml:mrow> </mml:math> , with Besov-tree random coefficients. This is to say that the logarithms of the diffusion coefficients are sampled from so-called Besov-tree priors, which have recently been proposed to model data for fractal phenomena in science and engineering. Numerical analysis of the fully discrete FEM for the elliptic PDE includes quadrature approximation and must account for (a) nonuniform pathwise upper and lower coefficient bounds, and for (b) low path-regularity of the Besov-tree coefficients. Admissible non-parametric random coefficients correspond to random functions exhibiting singularities on random fractals with tunable fractal dimension, but involve no a-priori specification of the fractal geometry of singular supports of sample paths. Optimal complexity and convergence rate estimates for quantities of interest and for their second moments are proved. A convergence analysis for MLMC-FEM is performed which yields choices of the algorithmic steering parameters for efficient implementation. A complexity (“error vs work”) analysis of the MLMC-FEM approximations is provided.\",\"PeriodicalId\":48569,\"journal\":{\"name\":\"Stochastics and Partial Differential Equations-Analysis and Computations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastics and Partial Differential Equations-Analysis and Computations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40072-023-00313-w\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastics and Partial Differential Equations-Analysis and Computations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40072-023-00313-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Multilevel Monte Carlo FEM for elliptic PDEs with Besov random tree priors
Abstract We develop a multilevel Monte Carlo (MLMC)-FEM algorithm for linear, elliptic diffusion problems in polytopal domain $${\mathcal {D}}\subset {\mathbb {R}}^d$$ D⊂Rd , with Besov-tree random coefficients. This is to say that the logarithms of the diffusion coefficients are sampled from so-called Besov-tree priors, which have recently been proposed to model data for fractal phenomena in science and engineering. Numerical analysis of the fully discrete FEM for the elliptic PDE includes quadrature approximation and must account for (a) nonuniform pathwise upper and lower coefficient bounds, and for (b) low path-regularity of the Besov-tree coefficients. Admissible non-parametric random coefficients correspond to random functions exhibiting singularities on random fractals with tunable fractal dimension, but involve no a-priori specification of the fractal geometry of singular supports of sample paths. Optimal complexity and convergence rate estimates for quantities of interest and for their second moments are proved. A convergence analysis for MLMC-FEM is performed which yields choices of the algorithmic steering parameters for efficient implementation. A complexity (“error vs work”) analysis of the MLMC-FEM approximations is provided.
期刊介绍:
Stochastics and Partial Differential Equations: Analysis and Computations publishes the highest quality articles presenting significantly new and important developments in the SPDE theory and applications. SPDE is an active interdisciplinary area at the crossroads of stochastic anaylsis, partial differential equations and scientific computing. Statistical physics, fluid dynamics, financial modeling, nonlinear filtering, super-processes, continuum physics and, recently, uncertainty quantification are important contributors to and major users of the theory and practice of SPDEs. The journal is promoting synergetic activities between the SPDE theory, applications, and related large scale computations. The journal also welcomes high quality articles in fields strongly connected to SPDE such as stochastic differential equations in infinite-dimensional state spaces or probabilistic approaches to solving deterministic PDEs.