{"title":"基于3D增材制造锚的cfrp -金属连接建模与实验验证","authors":"Giorgio De Pasquale, Antonio Coluccia","doi":"10.1115/1.4063110","DOIUrl":null,"url":null,"abstract":"Abstract The joining techniques between carbon fiber reinforced polymer (CFRP) and metal are of great importance in many areas of structural mechanics where the optimization of weight, rigidity, and strength is a necessity (such as aeronautics, vehicles, energy generation, and biomechanics). As a result, several types of metal–composite joints have been manufactured using different methods, with the 3D metal anchor solution attracting significant attention. This study evaluates different anchor geometries applied to single lap joints through preliminary finite element method (FEM) simulations and experimental validation on joints between CFRP and Inconel 625 produced via a laser beam powder bed fusion (LB-PBF) additive process. The models proposed increase in complexity. The homogenization process is employed to determine the equivalent properties of the joint region that is occupied by metal anchors and CFRP. The model also supports topology parametrization to assess the impact of anchor geometry on structural properties. The study provides experimental validation of joint strength under tensile load for various anchoring surface topologies.","PeriodicalId":16299,"journal":{"name":"Journal of Manufacturing Science and Engineering-transactions of The Asme","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Modeling and Experimental Validation of CFRP-Metal Joints Utilizing 3D Additively Manufactured Anchors\",\"authors\":\"Giorgio De Pasquale, Antonio Coluccia\",\"doi\":\"10.1115/1.4063110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The joining techniques between carbon fiber reinforced polymer (CFRP) and metal are of great importance in many areas of structural mechanics where the optimization of weight, rigidity, and strength is a necessity (such as aeronautics, vehicles, energy generation, and biomechanics). As a result, several types of metal–composite joints have been manufactured using different methods, with the 3D metal anchor solution attracting significant attention. This study evaluates different anchor geometries applied to single lap joints through preliminary finite element method (FEM) simulations and experimental validation on joints between CFRP and Inconel 625 produced via a laser beam powder bed fusion (LB-PBF) additive process. The models proposed increase in complexity. The homogenization process is employed to determine the equivalent properties of the joint region that is occupied by metal anchors and CFRP. The model also supports topology parametrization to assess the impact of anchor geometry on structural properties. The study provides experimental validation of joint strength under tensile load for various anchoring surface topologies.\",\"PeriodicalId\":16299,\"journal\":{\"name\":\"Journal of Manufacturing Science and Engineering-transactions of The Asme\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Manufacturing Science and Engineering-transactions of The Asme\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063110\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Science and Engineering-transactions of The Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063110","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Modeling and Experimental Validation of CFRP-Metal Joints Utilizing 3D Additively Manufactured Anchors
Abstract The joining techniques between carbon fiber reinforced polymer (CFRP) and metal are of great importance in many areas of structural mechanics where the optimization of weight, rigidity, and strength is a necessity (such as aeronautics, vehicles, energy generation, and biomechanics). As a result, several types of metal–composite joints have been manufactured using different methods, with the 3D metal anchor solution attracting significant attention. This study evaluates different anchor geometries applied to single lap joints through preliminary finite element method (FEM) simulations and experimental validation on joints between CFRP and Inconel 625 produced via a laser beam powder bed fusion (LB-PBF) additive process. The models proposed increase in complexity. The homogenization process is employed to determine the equivalent properties of the joint region that is occupied by metal anchors and CFRP. The model also supports topology parametrization to assess the impact of anchor geometry on structural properties. The study provides experimental validation of joint strength under tensile load for various anchoring surface topologies.
期刊介绍:
Areas of interest including, but not limited to: Additive manufacturing; Advanced materials and processing; Assembly; Biomedical manufacturing; Bulk deformation processes (e.g., extrusion, forging, wire drawing, etc.); CAD/CAM/CAE; Computer-integrated manufacturing; Control and automation; Cyber-physical systems in manufacturing; Data science-enhanced manufacturing; Design for manufacturing; Electrical and electrochemical machining; Grinding and abrasive processes; Injection molding and other polymer fabrication processes; Inspection and quality control; Laser processes; Machine tool dynamics; Machining processes; Materials handling; Metrology; Micro- and nano-machining and processing; Modeling and simulation; Nontraditional manufacturing processes; Plant engineering and maintenance; Powder processing; Precision and ultra-precision machining; Process engineering; Process planning; Production systems optimization; Rapid prototyping and solid freeform fabrication; Robotics and flexible tooling; Sensing, monitoring, and diagnostics; Sheet and tube metal forming; Sustainable manufacturing; Tribology in manufacturing; Welding and joining