在基本基础上展开拟对称麦克唐纳多项式

Q3 Mathematics
Sylvie Corteel, Olya Mandelshtam, Austin Roberts
{"title":"在基本基础上展开拟对称麦克唐纳多项式","authors":"Sylvie Corteel, Olya Mandelshtam, Austin Roberts","doi":"10.5802/alco.289","DOIUrl":null,"url":null,"abstract":"The quasisymmetric Macdonald polynomials G γ (X;q,t) were recently introduced by the first and second authors with Haglund, Mason, and Williams in [3] to refine the symmetric Macdonald polynomials P λ (X;q,t) with the property that G γ (X;0,0) equals QS γ (X), the quasisymmetric Schur polynomial of [9]. We derive an expansion for G γ (X;q,t) in the fundamental basis of quasisymmetric functions.","PeriodicalId":36046,"journal":{"name":"Algebraic Combinatorics","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Expanding the quasisymmetric Macdonald polynomials in the fundamental basis\",\"authors\":\"Sylvie Corteel, Olya Mandelshtam, Austin Roberts\",\"doi\":\"10.5802/alco.289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The quasisymmetric Macdonald polynomials G γ (X;q,t) were recently introduced by the first and second authors with Haglund, Mason, and Williams in [3] to refine the symmetric Macdonald polynomials P λ (X;q,t) with the property that G γ (X;0,0) equals QS γ (X), the quasisymmetric Schur polynomial of [9]. We derive an expansion for G γ (X;q,t) in the fundamental basis of quasisymmetric functions.\",\"PeriodicalId\":36046,\"journal\":{\"name\":\"Algebraic Combinatorics\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebraic Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/alco.289\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/alco.289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

准对称麦克唐纳多项式G γ (X;q,t)是最近由Haglund, Mason, and Williams在[3]中的第一和第二作者引入的,以改进对称麦克唐纳多项式P λ (X;q,t),使其具有G γ (X;0,0)等于QS γ (X)的性质,即[9]的准对称Schur多项式。在拟对称函数的基本基上,导出了G γ (X;q,t)的展开式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Expanding the quasisymmetric Macdonald polynomials in the fundamental basis
The quasisymmetric Macdonald polynomials G γ (X;q,t) were recently introduced by the first and second authors with Haglund, Mason, and Williams in [3] to refine the symmetric Macdonald polynomials P λ (X;q,t) with the property that G γ (X;0,0) equals QS γ (X), the quasisymmetric Schur polynomial of [9]. We derive an expansion for G γ (X;q,t) in the fundamental basis of quasisymmetric functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebraic Combinatorics
Algebraic Combinatorics Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.30
自引率
0.00%
发文量
45
审稿时长
51 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信