巴基斯坦哈达德大学哈达德药物科学研究所

Ratna Annisa Utami
{"title":"巴基斯坦哈达德大学哈达德药物科学研究所","authors":"Ratna Annisa Utami","doi":"10.7454/psr.v10i2.1317","DOIUrl":null,"url":null,"abstract":"Tablet production is a very intricate process influenced by numerous process variables or parameters. This study aimed to identify the critical processing variables that affect Critical Quality Attributes (CQAs) of vitamin C film-coated caplets utilizing a statistical experimental design. A two-level complete factorial design with two central points was used to examine the process parameters that posed the greatest risk to CQAs. The process variables investigated included mesh size and duration for the lubrication process, as well as speed and main thickness for compression. Statistical results showed that mesh number, lubrication time, and their interaction significantly affect flow rate, Hausner ratio, and compressibility index. Higher mesh number and longer duration improved flow properties; lower main thickness significantly increased core caplet hardness; and lower dissolution rates were observed at higher compression speeds. Based on this study, it can be concluded that mesh number and lubrication time only significantly affected the bulk quality attributes but did not have a significant impact on the quality attributes of vitamin C caplets. On the other hand, the parameters of the compression process, such as speed and main thickness, greatly impacted the quality attributes of vitamin C caplets. In this study, the use of mesh number 20 with 7 minutes of lubrication, and a speed of 17 rpm with a main thickness scale of 2.00 were determined as the optimal process parameters. The optimal process parameters for the lubrication and compression processes were obtained from statistical analysis of the response data.","PeriodicalId":55754,"journal":{"name":"Pharmaceutical Sciences and Research","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hamdard Institute of Pharmaceutical Sciences, Hamdard University, Pakistan\",\"authors\":\"Ratna Annisa Utami\",\"doi\":\"10.7454/psr.v10i2.1317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tablet production is a very intricate process influenced by numerous process variables or parameters. This study aimed to identify the critical processing variables that affect Critical Quality Attributes (CQAs) of vitamin C film-coated caplets utilizing a statistical experimental design. A two-level complete factorial design with two central points was used to examine the process parameters that posed the greatest risk to CQAs. The process variables investigated included mesh size and duration for the lubrication process, as well as speed and main thickness for compression. Statistical results showed that mesh number, lubrication time, and their interaction significantly affect flow rate, Hausner ratio, and compressibility index. Higher mesh number and longer duration improved flow properties; lower main thickness significantly increased core caplet hardness; and lower dissolution rates were observed at higher compression speeds. Based on this study, it can be concluded that mesh number and lubrication time only significantly affected the bulk quality attributes but did not have a significant impact on the quality attributes of vitamin C caplets. On the other hand, the parameters of the compression process, such as speed and main thickness, greatly impacted the quality attributes of vitamin C caplets. In this study, the use of mesh number 20 with 7 minutes of lubrication, and a speed of 17 rpm with a main thickness scale of 2.00 were determined as the optimal process parameters. The optimal process parameters for the lubrication and compression processes were obtained from statistical analysis of the response data.\",\"PeriodicalId\":55754,\"journal\":{\"name\":\"Pharmaceutical Sciences and Research\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical Sciences and Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7454/psr.v10i2.1317\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Sciences and Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7454/psr.v10i2.1317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

片剂生产是一个非常复杂的过程,受众多工艺变量或参数的影响。本研究旨在利用统计实验设计确定影响维生素C薄膜包衣胶囊关键质量属性(CQAs)的关键工艺变量。采用具有两个中心点的两水平完全因子设计来检查对cqa构成最大风险的工艺参数。研究的过程变量包括润滑过程的网格尺寸和持续时间,以及压缩的速度和主要厚度。统计结果表明,啮合数、润滑时间及其相互作用对流量、豪斯纳比和压缩系数有显著影响。更高的网格数和更长的持续时间改善了流动性能;较低的主厚度显著提高了芯壳硬度;压缩速度越快,溶解速率越低。根据本研究,可以得出结论,目数和润滑时间仅显著影响维生素C胶囊的散装质量属性,而对维生素C胶囊的质量属性没有显著影响。另一方面,压缩过程的参数,如速度和主厚度,对维生素C胶囊的质量属性有很大的影响。在本研究中,采用20目,润滑时间为7分钟,转速为17 rpm,主厚度尺度为2.00为最佳工艺参数。通过对响应数据的统计分析,得到了润滑和压缩过程的最佳工艺参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hamdard Institute of Pharmaceutical Sciences, Hamdard University, Pakistan
Tablet production is a very intricate process influenced by numerous process variables or parameters. This study aimed to identify the critical processing variables that affect Critical Quality Attributes (CQAs) of vitamin C film-coated caplets utilizing a statistical experimental design. A two-level complete factorial design with two central points was used to examine the process parameters that posed the greatest risk to CQAs. The process variables investigated included mesh size and duration for the lubrication process, as well as speed and main thickness for compression. Statistical results showed that mesh number, lubrication time, and their interaction significantly affect flow rate, Hausner ratio, and compressibility index. Higher mesh number and longer duration improved flow properties; lower main thickness significantly increased core caplet hardness; and lower dissolution rates were observed at higher compression speeds. Based on this study, it can be concluded that mesh number and lubrication time only significantly affected the bulk quality attributes but did not have a significant impact on the quality attributes of vitamin C caplets. On the other hand, the parameters of the compression process, such as speed and main thickness, greatly impacted the quality attributes of vitamin C caplets. In this study, the use of mesh number 20 with 7 minutes of lubrication, and a speed of 17 rpm with a main thickness scale of 2.00 were determined as the optimal process parameters. The optimal process parameters for the lubrication and compression processes were obtained from statistical analysis of the response data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
12
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信