利用PVP-PLA复合材料制备具有即时释放特性的3D打印载茶碱长丝

Silvia Surini
{"title":"利用PVP-PLA复合材料制备具有即时释放特性的3D打印载茶碱长丝","authors":"Silvia Surini","doi":"10.7454/psr.v10i2.1307","DOIUrl":null,"url":null,"abstract":"Fused deposition modeling (FDM), known as a highly effective 3D printing technique, holds promise as an alternative approach to tablet manufacturing. While commonly employing thermoplastic polymers as starting materials, the integration of established pharmaceutical excipients remains unexplored. Polyvinyl pyrrolidone (PVP) is a frequently used excipient known for its potential to confer immediate-release properties to drugs. However, its suitability for extrusion is hindered by its thermal and melt-rheological properties. In contrast, polylactic acid (PLA), which has robust mechanical strength and thermal plasticity, was expected to overcome PVP’s limitations. This study aims to obtain drug-loaded filaments using the combination of PVP and PLA through a hot-melt extrusion process, aiming for favorable mechanical properties and immediate-release behavior. Utilizing a twin-screw extruder, and theophylline was used as the model drug, three formulations were optimized –FP1, FP2, and FP3– containing 0%, 10%, and 20% theophylline, respectively. Subsequent evaluation including filament morphology, mechanical properties, drug content, and drug release profile, were performed to each filament. FP2 emerged as the most promising formulation, with 10.35% (w/w) drug load and over 95% drug released in an hour. All formulations exhibited slightly rough filament surfaces with diameters averaging 1.4-1.6 mm. Notably, an increase in the theophylline content correlates with the diminished filament strength, evident in reduced hardness and a rise in brittleness. This study emphasized the potential of PVP-PLA-based filaments for future pharmaceutical 3D printing formulations, providing immediate drug release characteristics.","PeriodicalId":55754,"journal":{"name":"Pharmaceutical Sciences and Research","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Utilization of PVP-PLA Combination in Fabricating Theophylline-loaded Filament for 3D Printing with Immediate Release Behavior\",\"authors\":\"Silvia Surini\",\"doi\":\"10.7454/psr.v10i2.1307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fused deposition modeling (FDM), known as a highly effective 3D printing technique, holds promise as an alternative approach to tablet manufacturing. While commonly employing thermoplastic polymers as starting materials, the integration of established pharmaceutical excipients remains unexplored. Polyvinyl pyrrolidone (PVP) is a frequently used excipient known for its potential to confer immediate-release properties to drugs. However, its suitability for extrusion is hindered by its thermal and melt-rheological properties. In contrast, polylactic acid (PLA), which has robust mechanical strength and thermal plasticity, was expected to overcome PVP’s limitations. This study aims to obtain drug-loaded filaments using the combination of PVP and PLA through a hot-melt extrusion process, aiming for favorable mechanical properties and immediate-release behavior. Utilizing a twin-screw extruder, and theophylline was used as the model drug, three formulations were optimized –FP1, FP2, and FP3– containing 0%, 10%, and 20% theophylline, respectively. Subsequent evaluation including filament morphology, mechanical properties, drug content, and drug release profile, were performed to each filament. FP2 emerged as the most promising formulation, with 10.35% (w/w) drug load and over 95% drug released in an hour. All formulations exhibited slightly rough filament surfaces with diameters averaging 1.4-1.6 mm. Notably, an increase in the theophylline content correlates with the diminished filament strength, evident in reduced hardness and a rise in brittleness. This study emphasized the potential of PVP-PLA-based filaments for future pharmaceutical 3D printing formulations, providing immediate drug release characteristics.\",\"PeriodicalId\":55754,\"journal\":{\"name\":\"Pharmaceutical Sciences and Research\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical Sciences and Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7454/psr.v10i2.1307\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Sciences and Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7454/psr.v10i2.1307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

熔融沉积建模(FDM)被称为一种高效的3D打印技术,有望成为平板电脑制造的替代方法。虽然通常采用热塑性聚合物作为起始材料,建立的药用辅料的整合仍未探索。聚乙烯吡咯烷酮(PVP)是一种常用的赋形剂,因其具有立即释放药物的特性而闻名。然而,它的热和熔体流变特性阻碍了它的挤出适用性。相比之下,聚乳酸(PLA)具有强大的机械强度和热塑性,有望克服PVP的局限性。本研究旨在通过热熔挤压法制备PVP和PLA复合的载药长丝,以获得良好的力学性能和即刻释放性能。利用双螺杆挤出机,以茶碱为模型药物,优化了3个配方fp1、FP2和FP3,分别含0%、10%和20%茶碱。随后对每根细丝进行评价,包括细丝形态、机械性能、药物含量和药物释放谱。FP2以10.35% (w/w)的载药量和95%以上的释药速度被认为是最有希望的配方。所有配方都表现出略粗糙的纤维表面,平均直径为1.4-1.6 mm。值得注意的是,茶碱含量的增加与长丝强度的降低有关,明显表现在硬度的降低和脆性的增加。这项研究强调了pvp - pla基长丝在未来药物3D打印配方中的潜力,提供了即时的药物释放特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Utilization of PVP-PLA Combination in Fabricating Theophylline-loaded Filament for 3D Printing with Immediate Release Behavior
Fused deposition modeling (FDM), known as a highly effective 3D printing technique, holds promise as an alternative approach to tablet manufacturing. While commonly employing thermoplastic polymers as starting materials, the integration of established pharmaceutical excipients remains unexplored. Polyvinyl pyrrolidone (PVP) is a frequently used excipient known for its potential to confer immediate-release properties to drugs. However, its suitability for extrusion is hindered by its thermal and melt-rheological properties. In contrast, polylactic acid (PLA), which has robust mechanical strength and thermal plasticity, was expected to overcome PVP’s limitations. This study aims to obtain drug-loaded filaments using the combination of PVP and PLA through a hot-melt extrusion process, aiming for favorable mechanical properties and immediate-release behavior. Utilizing a twin-screw extruder, and theophylline was used as the model drug, three formulations were optimized –FP1, FP2, and FP3– containing 0%, 10%, and 20% theophylline, respectively. Subsequent evaluation including filament morphology, mechanical properties, drug content, and drug release profile, were performed to each filament. FP2 emerged as the most promising formulation, with 10.35% (w/w) drug load and over 95% drug released in an hour. All formulations exhibited slightly rough filament surfaces with diameters averaging 1.4-1.6 mm. Notably, an increase in the theophylline content correlates with the diminished filament strength, evident in reduced hardness and a rise in brittleness. This study emphasized the potential of PVP-PLA-based filaments for future pharmaceutical 3D printing formulations, providing immediate drug release characteristics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
12
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信