曲率张量的几何和物理性质综述

Ganesh Prasad Pokhariyal
{"title":"曲率张量的几何和物理性质综述","authors":"Ganesh Prasad Pokhariyal","doi":"10.61294/jiaps2023.2731","DOIUrl":null,"url":null,"abstract":"Bernard Riemann was the first to define curvature tensor. Most of the curvature tensors are defined with the help of Riemann curvaturetensor, Ricci tensor and metric tensor.It has been observed that different combinations of Ricci tensor and metric tensor in the defined tensors lead to some of the different geometrical and physical properties.M.S.C. 2010:53C25, 53C43.","PeriodicalId":16271,"journal":{"name":"Journal of International Academy Of Physical Sciences","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometric and Physical Properties of Curvature Tensors -A Review\",\"authors\":\"Ganesh Prasad Pokhariyal\",\"doi\":\"10.61294/jiaps2023.2731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bernard Riemann was the first to define curvature tensor. Most of the curvature tensors are defined with the help of Riemann curvaturetensor, Ricci tensor and metric tensor.It has been observed that different combinations of Ricci tensor and metric tensor in the defined tensors lead to some of the different geometrical and physical properties.M.S.C. 2010:53C25, 53C43.\",\"PeriodicalId\":16271,\"journal\":{\"name\":\"Journal of International Academy Of Physical Sciences\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of International Academy Of Physical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.61294/jiaps2023.2731\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of International Academy Of Physical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.61294/jiaps2023.2731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

黎曼是第一个定义曲率张量的人。大多数曲率张量是借助黎曼曲率张量、里奇张量和度规张量来定义的。已经观察到,在定义的张量中,里奇张量和度规张量的不同组合会导致一些不同的几何和物理性质。现年53岁的2010:53C25 c43。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometric and Physical Properties of Curvature Tensors -A Review
Bernard Riemann was the first to define curvature tensor. Most of the curvature tensors are defined with the help of Riemann curvaturetensor, Ricci tensor and metric tensor.It has been observed that different combinations of Ricci tensor and metric tensor in the defined tensors lead to some of the different geometrical and physical properties.M.S.C. 2010:53C25, 53C43.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信