应用聚类方法研究非参数密度估计算法

Rasa Šmidtaitė, Tomas Ruzgas
{"title":"应用聚类方法研究非参数密度估计算法","authors":"Rasa Šmidtaitė, Tomas Ruzgas","doi":"10.15388/lmr.2006.30726","DOIUrl":null,"url":null,"abstract":"One of the ways to improve the accuracy of probability density estimation is multi-mode density treating as the mixture of single-mode one. In this paper we offer to use data clustering in the first place and to estimate density in every cluster separately. To objectively compare the performance, Monte Carlo approximation is used. While using various methods to evaluate the accuracy of probability density estimations we tried to use clustered and not clustered data. In this paper we also tried to reveal the usefulness of using clustering for data generated by single-mode and multi-mode distributions.","PeriodicalId":33611,"journal":{"name":"Lietuvos Matematikos Rinkinys","volume":"147 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research of nonparametric density estimation algorithms by applying clustering methods\",\"authors\":\"Rasa Šmidtaitė, Tomas Ruzgas\",\"doi\":\"10.15388/lmr.2006.30726\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the ways to improve the accuracy of probability density estimation is multi-mode density treating as the mixture of single-mode one. In this paper we offer to use data clustering in the first place and to estimate density in every cluster separately. To objectively compare the performance, Monte Carlo approximation is used. While using various methods to evaluate the accuracy of probability density estimations we tried to use clustered and not clustered data. In this paper we also tried to reveal the usefulness of using clustering for data generated by single-mode and multi-mode distributions.\",\"PeriodicalId\":33611,\"journal\":{\"name\":\"Lietuvos Matematikos Rinkinys\",\"volume\":\"147 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lietuvos Matematikos Rinkinys\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15388/lmr.2006.30726\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lietuvos Matematikos Rinkinys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15388/lmr.2006.30726","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提高概率密度估计精度的方法之一是将多模密度作为单模密度的混合处理。在本文中,我们提出首先使用数据聚类,并单独估计每个聚类的密度。为了客观地比较性能,使用蒙特卡罗近似。在使用各种方法评估概率密度估计的准确性时,我们尝试使用聚类和非聚类数据。在本文中,我们还试图揭示对单模和多模分布生成的数据使用聚类的有用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research of nonparametric density estimation algorithms by applying clustering methods
One of the ways to improve the accuracy of probability density estimation is multi-mode density treating as the mixture of single-mode one. In this paper we offer to use data clustering in the first place and to estimate density in every cluster separately. To objectively compare the performance, Monte Carlo approximation is used. While using various methods to evaluate the accuracy of probability density estimations we tried to use clustered and not clustered data. In this paper we also tried to reveal the usefulness of using clustering for data generated by single-mode and multi-mode distributions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信