满足Cramer条件的加权和的上界估计

Vydas Čekanavičius, Aistė Elijio
{"title":"满足Cramer条件的加权和的上界估计","authors":"Vydas Čekanavičius, Aistė Elijio","doi":"10.15388/lmr.2006.30784","DOIUrl":null,"url":null,"abstract":"Let S = ω1S1 + ω2S2 + ⋯ + ωNSN. Here Sj is the sum of identically distributed random variables and ωj > 0 denotes weight. We consider the case, when Sj is the sum of independent random variables satisfying Cramer’s condition. Upper-bounds for the accuracy of compound Poisson first and second order approximations in uniformmetric are established.","PeriodicalId":33611,"journal":{"name":"Lietuvos Matematikos Rinkinys","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Upper-bound estimates for weighted sums satisfying Cramer’s condition\",\"authors\":\"Vydas Čekanavičius, Aistė Elijio\",\"doi\":\"10.15388/lmr.2006.30784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let S = ω1S1 + ω2S2 + ⋯ + ωNSN. Here Sj is the sum of identically distributed random variables and ωj > 0 denotes weight. We consider the case, when Sj is the sum of independent random variables satisfying Cramer’s condition. Upper-bounds for the accuracy of compound Poisson first and second order approximations in uniformmetric are established.\",\"PeriodicalId\":33611,\"journal\":{\"name\":\"Lietuvos Matematikos Rinkinys\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lietuvos Matematikos Rinkinys\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15388/lmr.2006.30784\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lietuvos Matematikos Rinkinys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15388/lmr.2006.30784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设S = ω1S1 + ω2S2 +⋯+ ωNSN。这里Sj是同分布随机变量的和ωj >0表示权重。我们考虑当Sj是满足Cramer条件的独立随机变量的和时的情况。建立了均匀性条件下复合泊松一阶和二阶近似精度的上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Upper-bound estimates for weighted sums satisfying Cramer’s condition
Let S = ω1S1 + ω2S2 + ⋯ + ωNSN. Here Sj is the sum of identically distributed random variables and ωj > 0 denotes weight. We consider the case, when Sj is the sum of independent random variables satisfying Cramer’s condition. Upper-bounds for the accuracy of compound Poisson first and second order approximations in uniformmetric are established.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信