{"title":"与Schrödinger算子相关的垂直Littlewood-Paley函数","authors":"Bruno Bongioanni, Eleonor Harboure, Pablo Quijano","doi":"10.33044/revuma.4381","DOIUrl":null,"url":null,"abstract":". In this work we consider the Littlewood–Paley quadratic function associated to the Schr¨odinger operator L = − ∆ + V involving spatial derivatives of the semigroup’s kernel. Under an appropriate reverse-H¨older condition on the potential we show boundedness on weighted L p spaces for 1 < p < p 0 , where p 0 depends on the order of the reverse-H¨older property. Using a subordination formula we extend these results to the corresponding quadratic function associated to the semigroup related to L α , 0 < α < 1.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vertical Littlewood–Paley functions related to a Schrödinger operator\",\"authors\":\"Bruno Bongioanni, Eleonor Harboure, Pablo Quijano\",\"doi\":\"10.33044/revuma.4381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this work we consider the Littlewood–Paley quadratic function associated to the Schr¨odinger operator L = − ∆ + V involving spatial derivatives of the semigroup’s kernel. Under an appropriate reverse-H¨older condition on the potential we show boundedness on weighted L p spaces for 1 < p < p 0 , where p 0 depends on the order of the reverse-H¨older property. Using a subordination formula we extend these results to the corresponding quadratic function associated to the semigroup related to L α , 0 < α < 1.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33044/revuma.4381\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33044/revuma.4381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Vertical Littlewood–Paley functions related to a Schrödinger operator
. In this work we consider the Littlewood–Paley quadratic function associated to the Schr¨odinger operator L = − ∆ + V involving spatial derivatives of the semigroup’s kernel. Under an appropriate reverse-H¨older condition on the potential we show boundedness on weighted L p spaces for 1 < p < p 0 , where p 0 depends on the order of the reverse-H¨older property. Using a subordination formula we extend these results to the corresponding quadratic function associated to the semigroup related to L α , 0 < α < 1.