Haya S. Sawan, Hanan A. Merey, Amr M. Mahmoud, Shimaa A. Atty
{"title":"基于ZrO2/离子液体的电化学传感器超灵敏同时测定生物体液中甲氧氯普胺和扑热息痛","authors":"Haya S. Sawan, Hanan A. Merey, Amr M. Mahmoud, Shimaa A. Atty","doi":"10.1007/s10800-023-01982-0","DOIUrl":null,"url":null,"abstract":"Abstract A novel electrode, carbon paste electrode modified with a nanocomposite of zirconium dioxide nanoparticles and ionic liquid (ZrO 2 NP/IL/CPE), has been fabricated and used to determine both the paracetamol (PAR) and metoclopramide (MCP) mixture in bulk powder, pharmaceutical formulations, and biological fluids. Furthermore, it is the first reported method to determine the paracetamol in presence of its toxic impurities (i.e., p-aminophenol and p-chloroacetanilide) simultaneously. Square wave (SWV) and cyclic voltammetric (CV) techniques were used to investigate the effect of scan rate, concentration, and pH in order to optimize sensor’s response. The calibration curves were obtained in both low and wide concentration ranges from (0.1–200 nM) to (3.0–100.0 µM) for both drugs with limit of detection (LOD) as low as 28 and 29 pM and limit of quantification (LOQ) 93 and 97 pM for PAR and MCP, respectively. The proposed sensor was used to assess PAR, MCP, and paracetamol toxic impurities in human plasma, urine samples, and pharmaceutical formulations with satisfactory results showing a broad dynamic linear range from 100 pM to 100 µM with high sensitivity and good reproducibility. Graphical Abstract","PeriodicalId":14887,"journal":{"name":"Journal of Applied Electrochemistry","volume":"80 1","pages":"0"},"PeriodicalIF":2.4000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrochemical sensor based on ZrO2/ionic liquid for ultrasensitive simultaneous determination of metoclopramide and paracetamol in biological fluids\",\"authors\":\"Haya S. Sawan, Hanan A. Merey, Amr M. Mahmoud, Shimaa A. Atty\",\"doi\":\"10.1007/s10800-023-01982-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A novel electrode, carbon paste electrode modified with a nanocomposite of zirconium dioxide nanoparticles and ionic liquid (ZrO 2 NP/IL/CPE), has been fabricated and used to determine both the paracetamol (PAR) and metoclopramide (MCP) mixture in bulk powder, pharmaceutical formulations, and biological fluids. Furthermore, it is the first reported method to determine the paracetamol in presence of its toxic impurities (i.e., p-aminophenol and p-chloroacetanilide) simultaneously. Square wave (SWV) and cyclic voltammetric (CV) techniques were used to investigate the effect of scan rate, concentration, and pH in order to optimize sensor’s response. The calibration curves were obtained in both low and wide concentration ranges from (0.1–200 nM) to (3.0–100.0 µM) for both drugs with limit of detection (LOD) as low as 28 and 29 pM and limit of quantification (LOQ) 93 and 97 pM for PAR and MCP, respectively. The proposed sensor was used to assess PAR, MCP, and paracetamol toxic impurities in human plasma, urine samples, and pharmaceutical formulations with satisfactory results showing a broad dynamic linear range from 100 pM to 100 µM with high sensitivity and good reproducibility. Graphical Abstract\",\"PeriodicalId\":14887,\"journal\":{\"name\":\"Journal of Applied Electrochemistry\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Electrochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10800-023-01982-0\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Electrochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10800-023-01982-0","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Electrochemical sensor based on ZrO2/ionic liquid for ultrasensitive simultaneous determination of metoclopramide and paracetamol in biological fluids
Abstract A novel electrode, carbon paste electrode modified with a nanocomposite of zirconium dioxide nanoparticles and ionic liquid (ZrO 2 NP/IL/CPE), has been fabricated and used to determine both the paracetamol (PAR) and metoclopramide (MCP) mixture in bulk powder, pharmaceutical formulations, and biological fluids. Furthermore, it is the first reported method to determine the paracetamol in presence of its toxic impurities (i.e., p-aminophenol and p-chloroacetanilide) simultaneously. Square wave (SWV) and cyclic voltammetric (CV) techniques were used to investigate the effect of scan rate, concentration, and pH in order to optimize sensor’s response. The calibration curves were obtained in both low and wide concentration ranges from (0.1–200 nM) to (3.0–100.0 µM) for both drugs with limit of detection (LOD) as low as 28 and 29 pM and limit of quantification (LOQ) 93 and 97 pM for PAR and MCP, respectively. The proposed sensor was used to assess PAR, MCP, and paracetamol toxic impurities in human plasma, urine samples, and pharmaceutical formulations with satisfactory results showing a broad dynamic linear range from 100 pM to 100 µM with high sensitivity and good reproducibility. Graphical Abstract
期刊介绍:
The Journal of Applied Electrochemistry is the leading journal on technologically orientated aspects of electrochemistry. The interface between electrochemical science and engineering is highlighted, emphasizing the application of electrochemistry to technological development and practice, and documenting properties and data of materials; design factors, design methodologies, scale-up, economics and testing of electrochemical devices and processes. The broad range of technologies includes energy conversion, conservation, and storage, new battery systems, fuel cells, super capacitors, solar cells, power delivery, industrial synthesis, environmental remediation, cell design, corrosion, electrochemical reaction engineering, medical applications of electrochemistry and bio-electrochemistry, the electrochemical treatment of effluents, hydrometallurgy, molten salt and solid state electrochemistry, surface finishing, electroplating, electrodeposition, sensors, and applications of molecular electrochemistry. It also publishes invited reviewed articles, book reviews and news items and a comprehensive electrochemical events calendar.