d可分量子演化家族

Krzysztof Szczygielski
{"title":"d可分量子演化家族","authors":"Krzysztof Szczygielski","doi":"10.1088/1751-8121/ad07c8","DOIUrl":null,"url":null,"abstract":"Abstract We propose and explore a notion of decomposably divisible (D-divisible) differentiable quantum evolution families on matrix algebras. This is achieved by replacing the complete positivity requirement, imposed on the propagator, by more general condition of decomposability. It is shown that such D-divisible dynamical maps satisfy a generalized version of Master Equation and are totally characterized by their time-local generators. Necessary and sufficient conditions for D-divisibility are found. Additionally, decomposable trace preserving semigroups are examined.","PeriodicalId":16785,"journal":{"name":"Journal of Physics A","volume":"34 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"D-divisible quantum evolution families\",\"authors\":\"Krzysztof Szczygielski\",\"doi\":\"10.1088/1751-8121/ad07c8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We propose and explore a notion of decomposably divisible (D-divisible) differentiable quantum evolution families on matrix algebras. This is achieved by replacing the complete positivity requirement, imposed on the propagator, by more general condition of decomposability. It is shown that such D-divisible dynamical maps satisfy a generalized version of Master Equation and are totally characterized by their time-local generators. Necessary and sufficient conditions for D-divisibility are found. Additionally, decomposable trace preserving semigroups are examined.\",\"PeriodicalId\":16785,\"journal\":{\"name\":\"Journal of Physics A\",\"volume\":\"34 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1751-8121/ad07c8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad07c8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要提出并探讨了矩阵代数上可分解可分(d -可分)可微量子演化族的概念。这是通过用更一般的可分解性条件取代施加在传播子上的完全正性要求来实现的。证明了这类d可分动态映射满足主方程的一个广义版本,并且完全由它们的时间局部发生器表征。给出了d可整除的充分必要条件。此外,还研究了可分解的微量保持半群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
D-divisible quantum evolution families
Abstract We propose and explore a notion of decomposably divisible (D-divisible) differentiable quantum evolution families on matrix algebras. This is achieved by replacing the complete positivity requirement, imposed on the propagator, by more general condition of decomposability. It is shown that such D-divisible dynamical maps satisfy a generalized version of Master Equation and are totally characterized by their time-local generators. Necessary and sufficient conditions for D-divisibility are found. Additionally, decomposable trace preserving semigroups are examined.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信