von Neumann代数的消失第一上同调和强1有界性

IF 0.7 2区 数学 Q2 MATHEMATICS
Ben Hayes, David Jekel, Srivatsav Kunnawalkam Elayavalli
{"title":"von Neumann代数的消失第一上同调和强1有界性","authors":"Ben Hayes, David Jekel, Srivatsav Kunnawalkam Elayavalli","doi":"10.4171/jncg/530","DOIUrl":null,"url":null,"abstract":"We obtain a new proof of Shlyakhtenko's result which states that if $G$ is a sofic, finitely presented group with vanishing first $\\ell^2$-Betti number, then $L(G)$ is strongly 1-bounded. Our proof of this result adapts and simplifies Jung's technical arguments which showed strong 1-boundedness under certain conditions on the Fuglede–Kadison determinant of the matrix capturing the relations. Our proof also features a key idea due to Jung which involves an iterative estimate for the covering numbers of microstate spaces. We also use the works of Shlyakhtenko and Shalom to give a short proof that the von Neumann algebras of sofic groups with Property (T) are strongly 1 bounded, which is a special case of another result by the authors.","PeriodicalId":54780,"journal":{"name":"Journal of Noncommutative Geometry","volume":"152 2","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Vanishing first cohomology and strong 1-boundedness for von Neumann algebras\",\"authors\":\"Ben Hayes, David Jekel, Srivatsav Kunnawalkam Elayavalli\",\"doi\":\"10.4171/jncg/530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We obtain a new proof of Shlyakhtenko's result which states that if $G$ is a sofic, finitely presented group with vanishing first $\\\\ell^2$-Betti number, then $L(G)$ is strongly 1-bounded. Our proof of this result adapts and simplifies Jung's technical arguments which showed strong 1-boundedness under certain conditions on the Fuglede–Kadison determinant of the matrix capturing the relations. Our proof also features a key idea due to Jung which involves an iterative estimate for the covering numbers of microstate spaces. We also use the works of Shlyakhtenko and Shalom to give a short proof that the von Neumann algebras of sofic groups with Property (T) are strongly 1 bounded, which is a special case of another result by the authors.\",\"PeriodicalId\":54780,\"journal\":{\"name\":\"Journal of Noncommutative Geometry\",\"volume\":\"152 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Noncommutative Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/jncg/530\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Noncommutative Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/jncg/530","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

我们得到了Shlyakhtenko结果的一个新的证明,即如果$G$是一个有限呈现的群,且第一个$\ well ^2$-Betti数消失,则$L(G)$是强1有界的。我们对这一结果的证明适应并简化了荣格的技术论证,该论证表明在捕捉关系的矩阵的Fuglede-Kadison行列式的一定条件下强1有界性。我们的证明还包括Jung的一个关键思想,它涉及对微状态空间覆盖数的迭代估计。我们还利用Shlyakhtenko和Shalom的工作给出了一个简短的证明,证明了具有性质(T)的群的von Neumann代数是强有界的,这是作者另一个结果的特例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vanishing first cohomology and strong 1-boundedness for von Neumann algebras
We obtain a new proof of Shlyakhtenko's result which states that if $G$ is a sofic, finitely presented group with vanishing first $\ell^2$-Betti number, then $L(G)$ is strongly 1-bounded. Our proof of this result adapts and simplifies Jung's technical arguments which showed strong 1-boundedness under certain conditions on the Fuglede–Kadison determinant of the matrix capturing the relations. Our proof also features a key idea due to Jung which involves an iterative estimate for the covering numbers of microstate spaces. We also use the works of Shlyakhtenko and Shalom to give a short proof that the von Neumann algebras of sofic groups with Property (T) are strongly 1 bounded, which is a special case of another result by the authors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
11.10%
发文量
30
审稿时长
>12 weeks
期刊介绍: The Journal of Noncommutative Geometry covers the noncommutative world in all its aspects. It is devoted to publication of research articles which represent major advances in the area of noncommutative geometry and its applications to other fields of mathematics and theoretical physics. Topics covered include in particular: Hochschild and cyclic cohomology K-theory and index theory Measure theory and topology of noncommutative spaces, operator algebras Spectral geometry of noncommutative spaces Noncommutative algebraic geometry Hopf algebras and quantum groups Foliations, groupoids, stacks, gerbes Deformations and quantization Noncommutative spaces in number theory and arithmetic geometry Noncommutative geometry in physics: QFT, renormalization, gauge theory, string theory, gravity, mirror symmetry, solid state physics, statistical mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信