由分数布朗运动驱动的随机分数微分包涵

IF 0.3 Q4 STATISTICS & PROBABILITY
Rahma Yasmina Moulay Hachemi, Toufik Guendouzi
{"title":"由分数布朗运动驱动的随机分数微分包涵","authors":"Rahma Yasmina Moulay Hachemi, Toufik Guendouzi","doi":"10.1515/rose-2023-2012","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we prove the existence result for a mild solution of a fractional stochastic evolution inclusion involving the Caputo derivative in the Hilbert space driven by a fractional Brownian motion with the Hurst parameter <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>H</m:mi> <m:mo>&gt;</m:mo> <m:mfrac> <m:mn>1</m:mn> <m:mn>2</m:mn> </m:mfrac> </m:mrow> </m:math> {H&gt;\\frac{1}{2}} . The results are obtained by using fractional calculation, operator semigroups and the fixed point theorem for multivalued mappings.","PeriodicalId":43421,"journal":{"name":"Random Operators and Stochastic Equations","volume":"48 2","pages":"0"},"PeriodicalIF":0.3000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stochastic fractional differential inclusion driven by fractional Brownian motion\",\"authors\":\"Rahma Yasmina Moulay Hachemi, Toufik Guendouzi\",\"doi\":\"10.1515/rose-2023-2012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we prove the existence result for a mild solution of a fractional stochastic evolution inclusion involving the Caputo derivative in the Hilbert space driven by a fractional Brownian motion with the Hurst parameter <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>H</m:mi> <m:mo>&gt;</m:mo> <m:mfrac> <m:mn>1</m:mn> <m:mn>2</m:mn> </m:mfrac> </m:mrow> </m:math> {H&gt;\\\\frac{1}{2}} . The results are obtained by using fractional calculation, operator semigroups and the fixed point theorem for multivalued mappings.\",\"PeriodicalId\":43421,\"journal\":{\"name\":\"Random Operators and Stochastic Equations\",\"volume\":\"48 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Random Operators and Stochastic Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/rose-2023-2012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Operators and Stochastic Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/rose-2023-2012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

摘要在具有Hurst参数H >的分数阶布朗运动驱动下,证明了包含Caputo导数的分数阶随机演化包含在Hilbert空间中温和解的存在性结果;1 2 {H>\frac{1}{2}}。利用分数计算、算子半群和多值映射的不动点定理得到了结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stochastic fractional differential inclusion driven by fractional Brownian motion
Abstract In this paper, we prove the existence result for a mild solution of a fractional stochastic evolution inclusion involving the Caputo derivative in the Hilbert space driven by a fractional Brownian motion with the Hurst parameter H > 1 2 {H>\frac{1}{2}} . The results are obtained by using fractional calculation, operator semigroups and the fixed point theorem for multivalued mappings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Random Operators and Stochastic Equations
Random Operators and Stochastic Equations STATISTICS & PROBABILITY-
CiteScore
0.60
自引率
25.00%
发文量
24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信