带源项的离散非线性扩散模型几种数值解的比较

Pub Date : 2023-10-27 DOI:10.1515/gmj-2023-2078
Beny Neta
{"title":"带源项的离散非线性扩散模型几种数值解的比较","authors":"Beny Neta","doi":"10.1515/gmj-2023-2078","DOIUrl":null,"url":null,"abstract":"Abstract The numerical solution of the nonlinear system of equations resulting from a real engineering problem is discussed. We use the approximate solution of a system of two nonlinear integrodifferential equations to build the nonlinear system of equations. This system can be solved by Newton’s method if the solution is differentiable, or using some derivative-free methods, such as Steffensen’s method. Here we show that Steffensen’s method does not always converge and secant method requires more iterations than Traub’s method and Newton’s method. We recommend Traub’s method in case the solution is not differentiable.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of several numerical solvers for a discretized nonlinear diffusion model with source terms\",\"authors\":\"Beny Neta\",\"doi\":\"10.1515/gmj-2023-2078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The numerical solution of the nonlinear system of equations resulting from a real engineering problem is discussed. We use the approximate solution of a system of two nonlinear integrodifferential equations to build the nonlinear system of equations. This system can be solved by Newton’s method if the solution is differentiable, or using some derivative-free methods, such as Steffensen’s method. Here we show that Steffensen’s method does not always converge and secant method requires more iterations than Traub’s method and Newton’s method. We recommend Traub’s method in case the solution is not differentiable.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/gmj-2023-2078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/gmj-2023-2078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

讨论了由实际工程问题引起的非线性方程组的数值解。我们利用两个非线性积分微分方程组的近似解来建立非线性方程组。如果解是可微的,可以用牛顿法求解,也可以用一些无导数的方法求解,如Steffensen法。这里我们证明Steffensen的方法并不总是收敛,割线法比Traub方法和牛顿方法需要更多的迭代。在解不可微的情况下,我们推荐使用特劳布法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Comparison of several numerical solvers for a discretized nonlinear diffusion model with source terms
Abstract The numerical solution of the nonlinear system of equations resulting from a real engineering problem is discussed. We use the approximate solution of a system of two nonlinear integrodifferential equations to build the nonlinear system of equations. This system can be solved by Newton’s method if the solution is differentiable, or using some derivative-free methods, such as Steffensen’s method. Here we show that Steffensen’s method does not always converge and secant method requires more iterations than Traub’s method and Newton’s method. We recommend Traub’s method in case the solution is not differentiable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信