{"title":"带源项的离散非线性扩散模型几种数值解的比较","authors":"Beny Neta","doi":"10.1515/gmj-2023-2078","DOIUrl":null,"url":null,"abstract":"Abstract The numerical solution of the nonlinear system of equations resulting from a real engineering problem is discussed. We use the approximate solution of a system of two nonlinear integrodifferential equations to build the nonlinear system of equations. This system can be solved by Newton’s method if the solution is differentiable, or using some derivative-free methods, such as Steffensen’s method. Here we show that Steffensen’s method does not always converge and secant method requires more iterations than Traub’s method and Newton’s method. We recommend Traub’s method in case the solution is not differentiable.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of several numerical solvers for a discretized nonlinear diffusion model with source terms\",\"authors\":\"Beny Neta\",\"doi\":\"10.1515/gmj-2023-2078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The numerical solution of the nonlinear system of equations resulting from a real engineering problem is discussed. We use the approximate solution of a system of two nonlinear integrodifferential equations to build the nonlinear system of equations. This system can be solved by Newton’s method if the solution is differentiable, or using some derivative-free methods, such as Steffensen’s method. Here we show that Steffensen’s method does not always converge and secant method requires more iterations than Traub’s method and Newton’s method. We recommend Traub’s method in case the solution is not differentiable.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/gmj-2023-2078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/gmj-2023-2078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparison of several numerical solvers for a discretized nonlinear diffusion model with source terms
Abstract The numerical solution of the nonlinear system of equations resulting from a real engineering problem is discussed. We use the approximate solution of a system of two nonlinear integrodifferential equations to build the nonlinear system of equations. This system can be solved by Newton’s method if the solution is differentiable, or using some derivative-free methods, such as Steffensen’s method. Here we show that Steffensen’s method does not always converge and secant method requires more iterations than Traub’s method and Newton’s method. We recommend Traub’s method in case the solution is not differentiable.