hernandez-leclerc范畴中的素数表示:经典分解

IF 0.6 3区 数学 Q3 MATHEMATICS
Leon Barth, Deniz Kus
{"title":"hernandez-leclerc范畴中的素数表示:经典分解","authors":"Leon Barth, Deniz Kus","doi":"10.4153/s0008414x23000706","DOIUrl":null,"url":null,"abstract":"We use the dual functional realization of loop algebras to study the prime irreducible objects in the Hernandez-Leclerc category for the quantum affine algebra associated to $\\mathfrak{sl}_{n+1}$. When the HL category is realized as a monoidal categorification of a cluster algebra \\cite{HL10,HL13}, these representations correspond precisely to the cluster variables and the frozen variables are minimal affinizations. For any height function, we determine the classical decomposition of these representations with respect to the Hopf subalgebra $\\mathbf{U}_q(\\mathfrak{sl}_{n+1})$ and describe the graded multiplicities of their graded limits in terms of lattice points of convex polytopes. Combined with \\cite{BCMo15} we obtain the graded decomposition of stable prime Demazure modules in level two integrable highest weight representations of the corresponding affine Lie algebra.","PeriodicalId":55284,"journal":{"name":"Canadian Journal of Mathematics-Journal Canadien De Mathematiques","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"PRIME REPRESENTATIONS IN THE HERNANDEZ-LECLERC CATEGORY: CLASSICAL DECOMPOSITIONS\",\"authors\":\"Leon Barth, Deniz Kus\",\"doi\":\"10.4153/s0008414x23000706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We use the dual functional realization of loop algebras to study the prime irreducible objects in the Hernandez-Leclerc category for the quantum affine algebra associated to $\\\\mathfrak{sl}_{n+1}$. When the HL category is realized as a monoidal categorification of a cluster algebra \\\\cite{HL10,HL13}, these representations correspond precisely to the cluster variables and the frozen variables are minimal affinizations. For any height function, we determine the classical decomposition of these representations with respect to the Hopf subalgebra $\\\\mathbf{U}_q(\\\\mathfrak{sl}_{n+1})$ and describe the graded multiplicities of their graded limits in terms of lattice points of convex polytopes. Combined with \\\\cite{BCMo15} we obtain the graded decomposition of stable prime Demazure modules in level two integrable highest weight representations of the corresponding affine Lie algebra.\",\"PeriodicalId\":55284,\"journal\":{\"name\":\"Canadian Journal of Mathematics-Journal Canadien De Mathematiques\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Mathematics-Journal Canadien De Mathematiques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4153/s0008414x23000706\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Mathematics-Journal Canadien De Mathematiques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4153/s0008414x23000706","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

利用循环代数的对偶泛函实现,研究了与$\mathfrak{sl}_{n+1}$相关的量子仿射代数的Hernandez-Leclerc范畴中的素不可约对象。当HL类别被实现为聚类代数\cite{HL10,HL13}的一元分类时,这些表示精确地对应于聚类变量,而冻结的变量是最小的亲和。对于任意高度函数,我们确定了这些表示在Hopf子代数$\mathbf{U}_q(\mathfrak{sl}_{n+1})$上的经典分解,并描述了它们的凸多边形格点的梯度极限的梯度多重性。结合\cite{BCMo15},我们得到了对应仿射李代数的二级可积最高权表示的稳定素Demazure模的梯度分解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PRIME REPRESENTATIONS IN THE HERNANDEZ-LECLERC CATEGORY: CLASSICAL DECOMPOSITIONS
We use the dual functional realization of loop algebras to study the prime irreducible objects in the Hernandez-Leclerc category for the quantum affine algebra associated to $\mathfrak{sl}_{n+1}$. When the HL category is realized as a monoidal categorification of a cluster algebra \cite{HL10,HL13}, these representations correspond precisely to the cluster variables and the frozen variables are minimal affinizations. For any height function, we determine the classical decomposition of these representations with respect to the Hopf subalgebra $\mathbf{U}_q(\mathfrak{sl}_{n+1})$ and describe the graded multiplicities of their graded limits in terms of lattice points of convex polytopes. Combined with \cite{BCMo15} we obtain the graded decomposition of stable prime Demazure modules in level two integrable highest weight representations of the corresponding affine Lie algebra.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
58
审稿时长
4.5 months
期刊介绍: The Canadian Journal of Mathematics (CJM) publishes original, high-quality research papers in all branches of mathematics. The Journal is a flagship publication of the Canadian Mathematical Society and has been published continuously since 1949. New research papers are published continuously online and collated into print issues six times each year. To be submitted to the Journal, papers should be at least 18 pages long and may be written in English or in French. Shorter papers should be submitted to the Canadian Mathematical Bulletin. Le Journal canadien de mathématiques (JCM) publie des articles de recherche innovants de grande qualité dans toutes les branches des mathématiques. Publication phare de la Société mathématique du Canada, il est publié en continu depuis 1949. En ligne, la revue propose constamment de nouveaux articles de recherche, puis les réunit dans des numéros imprimés six fois par année. Les textes présentés au JCM doivent compter au moins 18 pages et être rédigés en anglais ou en français. C’est le Bulletin canadien de mathématiques qui reçoit les articles plus courts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信