Lihua Zhang, Lizhi Jia, Liyuan He, David A Lipson, Yihui Wang, Shunzhong Wang, Xiaofeng Xu
{"title":"管理诱导磷与土壤微生物碳氮代谢解耦的稳态证据","authors":"Lihua Zhang, Lizhi Jia, Liyuan He, David A Lipson, Yihui Wang, Shunzhong Wang, Xiaofeng Xu","doi":"10.1093/jpe/rtad035","DOIUrl":null,"url":null,"abstract":"Abstract The theory of microbial stoichiometry predicts proportional coupling of microbial assimilation of carbon (C), nitrogen (N), and phosphorus (P), which is quantified as the homeostasis value (H). Covariation of H values for C, N, and P indicates that microbial C, N, and P assimilation are coupled. Here, we used a global dataset to investigate the spatiotemporal dynamics of H values of microbial C, N, and P across biomes. We found that land-use and management led to the decoupling of P from C and N metabolism over time and across space. We used structural equation modeling (SEM) to show that edaphic factors dominate the microbial homeostasis of P, while soil elemental concentrations dominate the homeostasis of C and N. We confirmed this result using the contrasting factors on microbial P vs. microbial C and N derived from a machine-learning algorithm. Overall, our study highlights the impacts of management on shifting microbial roles in nutrient cycling.","PeriodicalId":50085,"journal":{"name":"Journal of Plant Ecology","volume":"34 6","pages":"0"},"PeriodicalIF":3.0000,"publicationDate":"2023-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Homeostatic evidence of management-induced phosphorus decoupling from soil microbial carbon and nitrogen metabolism\",\"authors\":\"Lihua Zhang, Lizhi Jia, Liyuan He, David A Lipson, Yihui Wang, Shunzhong Wang, Xiaofeng Xu\",\"doi\":\"10.1093/jpe/rtad035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The theory of microbial stoichiometry predicts proportional coupling of microbial assimilation of carbon (C), nitrogen (N), and phosphorus (P), which is quantified as the homeostasis value (H). Covariation of H values for C, N, and P indicates that microbial C, N, and P assimilation are coupled. Here, we used a global dataset to investigate the spatiotemporal dynamics of H values of microbial C, N, and P across biomes. We found that land-use and management led to the decoupling of P from C and N metabolism over time and across space. We used structural equation modeling (SEM) to show that edaphic factors dominate the microbial homeostasis of P, while soil elemental concentrations dominate the homeostasis of C and N. We confirmed this result using the contrasting factors on microbial P vs. microbial C and N derived from a machine-learning algorithm. Overall, our study highlights the impacts of management on shifting microbial roles in nutrient cycling.\",\"PeriodicalId\":50085,\"journal\":{\"name\":\"Journal of Plant Ecology\",\"volume\":\"34 6\",\"pages\":\"0\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Plant Ecology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/jpe/rtad035\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Ecology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jpe/rtad035","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Homeostatic evidence of management-induced phosphorus decoupling from soil microbial carbon and nitrogen metabolism
Abstract The theory of microbial stoichiometry predicts proportional coupling of microbial assimilation of carbon (C), nitrogen (N), and phosphorus (P), which is quantified as the homeostasis value (H). Covariation of H values for C, N, and P indicates that microbial C, N, and P assimilation are coupled. Here, we used a global dataset to investigate the spatiotemporal dynamics of H values of microbial C, N, and P across biomes. We found that land-use and management led to the decoupling of P from C and N metabolism over time and across space. We used structural equation modeling (SEM) to show that edaphic factors dominate the microbial homeostasis of P, while soil elemental concentrations dominate the homeostasis of C and N. We confirmed this result using the contrasting factors on microbial P vs. microbial C and N derived from a machine-learning algorithm. Overall, our study highlights the impacts of management on shifting microbial roles in nutrient cycling.
期刊介绍:
Journal of Plant Ecology (JPE) serves as an important medium for ecologists to present research findings and discuss challenging issues in the broad field of plants and their interactions with biotic and abiotic environment. The JPE will cover all aspects of plant ecology, including plant ecophysiology, population ecology, community ecology, ecosystem ecology and landscape ecology as well as conservation ecology, evolutionary ecology, and theoretical ecology.