{"title":"求解分数阶Volterra积分微分方程和Abel积分方程的移位Legendre分数阶伪谱积分矩阵","authors":"M. Abdelhakem","doi":"10.1142/s0218348x23401904","DOIUrl":null,"url":null,"abstract":"Shifted Legendre polynomials (SLPs) with the Riemann–Liouville fractional integral operator have been used to create a novel fractional integration tool. This tool will be called the fractional shifted Legendre integration matrix (FSL B-matrix). Two algorithms depending on this matrix are designed to solve two different types of integral equations. The first algorithm is to solve fractional Volterra integro-differential equations (VIDEs) with a non-singular kernel. The second algorithm is for Abel’s integral equations. In addition, error analysis for the spectral expansion has been proven to ensure the expansion’s convergence. Finally, several examples have been illustrated, including an application for the population model.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shifted Legendre Fractional Pseudo-spectral Integration Matrices for Solving Fractional Volterra Integro-Differential Equations and Abel's Integral Equations\",\"authors\":\"M. Abdelhakem\",\"doi\":\"10.1142/s0218348x23401904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Shifted Legendre polynomials (SLPs) with the Riemann–Liouville fractional integral operator have been used to create a novel fractional integration tool. This tool will be called the fractional shifted Legendre integration matrix (FSL B-matrix). Two algorithms depending on this matrix are designed to solve two different types of integral equations. The first algorithm is to solve fractional Volterra integro-differential equations (VIDEs) with a non-singular kernel. The second algorithm is for Abel’s integral equations. In addition, error analysis for the spectral expansion has been proven to ensure the expansion’s convergence. Finally, several examples have been illustrated, including an application for the population model.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218348x23401904\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218348x23401904","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Shifted Legendre Fractional Pseudo-spectral Integration Matrices for Solving Fractional Volterra Integro-Differential Equations and Abel's Integral Equations
Shifted Legendre polynomials (SLPs) with the Riemann–Liouville fractional integral operator have been used to create a novel fractional integration tool. This tool will be called the fractional shifted Legendre integration matrix (FSL B-matrix). Two algorithms depending on this matrix are designed to solve two different types of integral equations. The first algorithm is to solve fractional Volterra integro-differential equations (VIDEs) with a non-singular kernel. The second algorithm is for Abel’s integral equations. In addition, error analysis for the spectral expansion has been proven to ensure the expansion’s convergence. Finally, several examples have been illustrated, including an application for the population model.