具有共形导数的随机势Yu-Toda-Sasa-Fukuyama方程的不同方法的解析随机解

IF 3.6 2区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Sahar Albosaily, Elsayed M. Elsayed, M. Daher Albalwi, Meshari Alesemi, Wael W. Mohammed
{"title":"具有共形导数的随机势Yu-Toda-Sasa-Fukuyama方程的不同方法的解析随机解","authors":"Sahar Albosaily, Elsayed M. Elsayed, M. Daher Albalwi, Meshari Alesemi, Wael W. Mohammed","doi":"10.3390/fractalfract7110787","DOIUrl":null,"url":null,"abstract":"We consider in this study the (3+1)-dimensional stochastic potential Yu–Toda–Sasa–Fukuyama with conformable derivative (SPYTSFE-CD) forced by white noise. For different kind of solutions of SPYTSFE-CD, including hyperbolic, rational, trigonometric and function, we use He’s semi-inverse and improved (G′/G)-expansion methods. Because it investigates solitons and nonlinear waves in dispersive media, plasma physics and fluid dynamics, the potential Yu–Toda–Sasa–Fukuyama theory may explain many intriguing scientific phenomena. We provide numerous 2D and 3D figures to address how the white noise destroys the pattern formation of the solutions and stabilizes the solutions of SPYTSFE-CD.","PeriodicalId":12435,"journal":{"name":"Fractal and Fractional","volume":"4 6","pages":"0"},"PeriodicalIF":3.6000,"publicationDate":"2023-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Analytical Stochastic Solutions for the Stochastic Potential Yu–Toda–Sasa–Fukuyama Equation with Conformable Derivative Using Different Methods\",\"authors\":\"Sahar Albosaily, Elsayed M. Elsayed, M. Daher Albalwi, Meshari Alesemi, Wael W. Mohammed\",\"doi\":\"10.3390/fractalfract7110787\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider in this study the (3+1)-dimensional stochastic potential Yu–Toda–Sasa–Fukuyama with conformable derivative (SPYTSFE-CD) forced by white noise. For different kind of solutions of SPYTSFE-CD, including hyperbolic, rational, trigonometric and function, we use He’s semi-inverse and improved (G′/G)-expansion methods. Because it investigates solitons and nonlinear waves in dispersive media, plasma physics and fluid dynamics, the potential Yu–Toda–Sasa–Fukuyama theory may explain many intriguing scientific phenomena. We provide numerous 2D and 3D figures to address how the white noise destroys the pattern formation of the solutions and stabilizes the solutions of SPYTSFE-CD.\",\"PeriodicalId\":12435,\"journal\":{\"name\":\"Fractal and Fractional\",\"volume\":\"4 6\",\"pages\":\"0\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractal and Fractional\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fractalfract7110787\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractal and Fractional","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fractalfract7110787","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了白噪声强制下的(3+1)维随机势Yu-Toda-Sasa-Fukuyama共形导数(SPYTSFE-CD)。对于SPYTSFE-CD的双曲解、有理解、三角解和函数解,我们采用He的半逆和改进的(G′/G)展开方法。因为它研究了色散介质中的孤子和非线性波,等离子体物理和流体动力学,潜在的Yu-Toda-Sasa-Fukuyama理论可以解释许多有趣的科学现象。我们提供了许多2D和3D图形来解决白噪声如何破坏解决方案的模式形成并稳定SPYTSFE-CD解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Analytical Stochastic Solutions for the Stochastic Potential Yu–Toda–Sasa–Fukuyama Equation with Conformable Derivative Using Different Methods
We consider in this study the (3+1)-dimensional stochastic potential Yu–Toda–Sasa–Fukuyama with conformable derivative (SPYTSFE-CD) forced by white noise. For different kind of solutions of SPYTSFE-CD, including hyperbolic, rational, trigonometric and function, we use He’s semi-inverse and improved (G′/G)-expansion methods. Because it investigates solitons and nonlinear waves in dispersive media, plasma physics and fluid dynamics, the potential Yu–Toda–Sasa–Fukuyama theory may explain many intriguing scientific phenomena. We provide numerous 2D and 3D figures to address how the white noise destroys the pattern formation of the solutions and stabilizes the solutions of SPYTSFE-CD.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fractal and Fractional
Fractal and Fractional MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
4.60
自引率
18.50%
发文量
632
审稿时长
11 weeks
期刊介绍: Fractal and Fractional is an international, scientific, peer-reviewed, open access journal that focuses on the study of fractals and fractional calculus, as well as their applications across various fields of science and engineering. It is published monthly online by MDPI and offers a cutting-edge platform for research papers, reviews, and short notes in this specialized area. The journal, identified by ISSN 2504-3110, encourages scientists to submit their experimental and theoretical findings in great detail, with no limits on the length of manuscripts to ensure reproducibility. A key objective is to facilitate the publication of detailed research, including experimental procedures and calculations. "Fractal and Fractional" also stands out for its unique offerings: it warmly welcomes manuscripts related to research proposals and innovative ideas, and allows for the deposition of electronic files containing detailed calculations and experimental protocols as supplementary material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信