Wenlong Zhao, Xiaodong Yu, Ronglian Tang, Lin Shi, Nan Chen, Jian Zhang, Chang Du
{"title":"多起伏地形供水系统的单向调压罐负压保护","authors":"Wenlong Zhao, Xiaodong Yu, Ronglian Tang, Lin Shi, Nan Chen, Jian Zhang, Chang Du","doi":"10.2166/aqua.2023.293","DOIUrl":null,"url":null,"abstract":"Abstract The protection of negative pressures generated by the hydraulic transient process in the water supply system is crucial to safe and stable operation. In this study, a mathematical model of a pipeline hydraulic transient system with multi-undulating terrain was established based on the method of characteristics (MOC). The generation and development of water hammer negative pressures were analyzed, and double one-way surge tank protection schemes were proposed. It proved that the first surge tank should be located at the initial negative pressure point, and the second surge tank should be located at the second-highest point rather than the highest point. Additionally, compared with the theoretical minimum height, there was an optimization margin for the total surge tank height, which was reduced by 21% in this study. Meanwhile, the applicability of protection schemes and the influence of the one-way surge tank number on the total height were analyzed. The total height reduced with the increase of one-way surge tank number and tended to a minimum value. By comprehensively considering the engineering investment and negative pressure protection effect, the optimal surge tank number could be determined. This research represents an advance in negative pressure protection in multi-undulating terrain and provides support for further engineering studies.","PeriodicalId":34693,"journal":{"name":"AQUA-Water Infrastructure Ecosystems and Society","volume":"70 1","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Negative pressure protection of water supply systems with multi-undulating terrain by one-way surge tanks\",\"authors\":\"Wenlong Zhao, Xiaodong Yu, Ronglian Tang, Lin Shi, Nan Chen, Jian Zhang, Chang Du\",\"doi\":\"10.2166/aqua.2023.293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The protection of negative pressures generated by the hydraulic transient process in the water supply system is crucial to safe and stable operation. In this study, a mathematical model of a pipeline hydraulic transient system with multi-undulating terrain was established based on the method of characteristics (MOC). The generation and development of water hammer negative pressures were analyzed, and double one-way surge tank protection schemes were proposed. It proved that the first surge tank should be located at the initial negative pressure point, and the second surge tank should be located at the second-highest point rather than the highest point. Additionally, compared with the theoretical minimum height, there was an optimization margin for the total surge tank height, which was reduced by 21% in this study. Meanwhile, the applicability of protection schemes and the influence of the one-way surge tank number on the total height were analyzed. The total height reduced with the increase of one-way surge tank number and tended to a minimum value. By comprehensively considering the engineering investment and negative pressure protection effect, the optimal surge tank number could be determined. This research represents an advance in negative pressure protection in multi-undulating terrain and provides support for further engineering studies.\",\"PeriodicalId\":34693,\"journal\":{\"name\":\"AQUA-Water Infrastructure Ecosystems and Society\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AQUA-Water Infrastructure Ecosystems and Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/aqua.2023.293\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AQUA-Water Infrastructure Ecosystems and Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/aqua.2023.293","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Negative pressure protection of water supply systems with multi-undulating terrain by one-way surge tanks
Abstract The protection of negative pressures generated by the hydraulic transient process in the water supply system is crucial to safe and stable operation. In this study, a mathematical model of a pipeline hydraulic transient system with multi-undulating terrain was established based on the method of characteristics (MOC). The generation and development of water hammer negative pressures were analyzed, and double one-way surge tank protection schemes were proposed. It proved that the first surge tank should be located at the initial negative pressure point, and the second surge tank should be located at the second-highest point rather than the highest point. Additionally, compared with the theoretical minimum height, there was an optimization margin for the total surge tank height, which was reduced by 21% in this study. Meanwhile, the applicability of protection schemes and the influence of the one-way surge tank number on the total height were analyzed. The total height reduced with the increase of one-way surge tank number and tended to a minimum value. By comprehensively considering the engineering investment and negative pressure protection effect, the optimal surge tank number could be determined. This research represents an advance in negative pressure protection in multi-undulating terrain and provides support for further engineering studies.