{"title":"用于兴趣点推荐的基于时间地理注意力的转换器","authors":"Shaojie Jiang, Jiang Wu","doi":"10.3233/jifs-234824","DOIUrl":null,"url":null,"abstract":"Point-of-Interest (POI) recommendation is one of the most important tasks in the field of social network analysis. Many efforts have been proposed to enhance the model performance for the POI recommendation task in recent years. Existing studies have revealed that the temporal factor and geographical factor are two crucial contextual factors which influence user decisions. However, they only learn representations of POIs and users from the single contextual factor and fuse the learned representations in the final stage, which ignores the interactions of different contextual factors, leading to learning suboptimal representations of POIs and users. To overcome this gap, we propose a novel Temporal-Geographical Attention-based Transformer (TGAT) for the POI recommendation task. Specifically, TGAT develops a hybrid sequence sampling strategy that samples the sequence of POIs from the different contextual factor POI graphs generated by the users’ check-in records. In this way, the interactions of different contextual factors can be care-fully pre-served. Then TGAT conducts a Transformer-based neural network backbone to learn representations of POIs from the sampling sequences. In addition, a weighted aggregation strategy is proposed to fuse the representations learned from different context factors. The extensive experimental results on real-world datasets have demonstrated the effectiveness of TGAT.","PeriodicalId":54795,"journal":{"name":"Journal of Intelligent & Fuzzy Systems","volume":"6 3","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temporal-geographical attention-based transformer for point-of-interest recommendation\",\"authors\":\"Shaojie Jiang, Jiang Wu\",\"doi\":\"10.3233/jifs-234824\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Point-of-Interest (POI) recommendation is one of the most important tasks in the field of social network analysis. Many efforts have been proposed to enhance the model performance for the POI recommendation task in recent years. Existing studies have revealed that the temporal factor and geographical factor are two crucial contextual factors which influence user decisions. However, they only learn representations of POIs and users from the single contextual factor and fuse the learned representations in the final stage, which ignores the interactions of different contextual factors, leading to learning suboptimal representations of POIs and users. To overcome this gap, we propose a novel Temporal-Geographical Attention-based Transformer (TGAT) for the POI recommendation task. Specifically, TGAT develops a hybrid sequence sampling strategy that samples the sequence of POIs from the different contextual factor POI graphs generated by the users’ check-in records. In this way, the interactions of different contextual factors can be care-fully pre-served. Then TGAT conducts a Transformer-based neural network backbone to learn representations of POIs from the sampling sequences. In addition, a weighted aggregation strategy is proposed to fuse the representations learned from different context factors. The extensive experimental results on real-world datasets have demonstrated the effectiveness of TGAT.\",\"PeriodicalId\":54795,\"journal\":{\"name\":\"Journal of Intelligent & Fuzzy Systems\",\"volume\":\"6 3\",\"pages\":\"0\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent & Fuzzy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/jifs-234824\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent & Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jifs-234824","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Temporal-geographical attention-based transformer for point-of-interest recommendation
Point-of-Interest (POI) recommendation is one of the most important tasks in the field of social network analysis. Many efforts have been proposed to enhance the model performance for the POI recommendation task in recent years. Existing studies have revealed that the temporal factor and geographical factor are two crucial contextual factors which influence user decisions. However, they only learn representations of POIs and users from the single contextual factor and fuse the learned representations in the final stage, which ignores the interactions of different contextual factors, leading to learning suboptimal representations of POIs and users. To overcome this gap, we propose a novel Temporal-Geographical Attention-based Transformer (TGAT) for the POI recommendation task. Specifically, TGAT develops a hybrid sequence sampling strategy that samples the sequence of POIs from the different contextual factor POI graphs generated by the users’ check-in records. In this way, the interactions of different contextual factors can be care-fully pre-served. Then TGAT conducts a Transformer-based neural network backbone to learn representations of POIs from the sampling sequences. In addition, a weighted aggregation strategy is proposed to fuse the representations learned from different context factors. The extensive experimental results on real-world datasets have demonstrated the effectiveness of TGAT.
期刊介绍:
The purpose of the Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology is to foster advancements of knowledge and help disseminate results concerning recent applications and case studies in the areas of fuzzy logic, intelligent systems, and web-based applications among working professionals and professionals in education and research, covering a broad cross-section of technical disciplines.