{"title":"预处理与CNN混合模型的小麦病害识别","authors":"R. Rajesh Kanna, V. Ulagamuthalvi","doi":"10.3233/jifs-233672","DOIUrl":null,"url":null,"abstract":"Diagnosis is given top priority in terms of farm resource allocation, because it directly affects the GDP of the country. Crop analysis at an early stage is important for verifying the efficient crop output. Computer vision has a number of intriguing and demanding concerns, including disease detection. After China, India is the world’s second-largest creator of wheat. However, there exist algorithms that can accurately identify the most prevalent illnesses of wheat leaves. To help farmers keep track on a large area of wheat plantation, leaf image and data processing techniques have recently been deployed extensively and in pricey systems. In this study, a hybrid pre-processing practice is used to remove undesired distortions while simultaneously enhancing the images. Fuzzy C-Means (FCM) is used to segment the affected areas from the pre-processed images. The data is then incorporated into a disease classification model using a Convolutional Neural Network (CNN). It was tested using Kaggle data and several metrics to see how efficient the suggested approach was. This study demonstrates that the traditional Long-Short Term Memory (LSTM) technique achieved 91.94% accuracy on the input images, but the hybrid pre-processing model with CNN achieved 95.06 percent accuracy.","PeriodicalId":54795,"journal":{"name":"Journal of Intelligent & Fuzzy Systems","volume":"12 5","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of wheat plant disease using hybrid model of pre-processing with CNN\",\"authors\":\"R. Rajesh Kanna, V. Ulagamuthalvi\",\"doi\":\"10.3233/jifs-233672\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diagnosis is given top priority in terms of farm resource allocation, because it directly affects the GDP of the country. Crop analysis at an early stage is important for verifying the efficient crop output. Computer vision has a number of intriguing and demanding concerns, including disease detection. After China, India is the world’s second-largest creator of wheat. However, there exist algorithms that can accurately identify the most prevalent illnesses of wheat leaves. To help farmers keep track on a large area of wheat plantation, leaf image and data processing techniques have recently been deployed extensively and in pricey systems. In this study, a hybrid pre-processing practice is used to remove undesired distortions while simultaneously enhancing the images. Fuzzy C-Means (FCM) is used to segment the affected areas from the pre-processed images. The data is then incorporated into a disease classification model using a Convolutional Neural Network (CNN). It was tested using Kaggle data and several metrics to see how efficient the suggested approach was. This study demonstrates that the traditional Long-Short Term Memory (LSTM) technique achieved 91.94% accuracy on the input images, but the hybrid pre-processing model with CNN achieved 95.06 percent accuracy.\",\"PeriodicalId\":54795,\"journal\":{\"name\":\"Journal of Intelligent & Fuzzy Systems\",\"volume\":\"12 5\",\"pages\":\"0\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent & Fuzzy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/jifs-233672\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent & Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jifs-233672","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Identification of wheat plant disease using hybrid model of pre-processing with CNN
Diagnosis is given top priority in terms of farm resource allocation, because it directly affects the GDP of the country. Crop analysis at an early stage is important for verifying the efficient crop output. Computer vision has a number of intriguing and demanding concerns, including disease detection. After China, India is the world’s second-largest creator of wheat. However, there exist algorithms that can accurately identify the most prevalent illnesses of wheat leaves. To help farmers keep track on a large area of wheat plantation, leaf image and data processing techniques have recently been deployed extensively and in pricey systems. In this study, a hybrid pre-processing practice is used to remove undesired distortions while simultaneously enhancing the images. Fuzzy C-Means (FCM) is used to segment the affected areas from the pre-processed images. The data is then incorporated into a disease classification model using a Convolutional Neural Network (CNN). It was tested using Kaggle data and several metrics to see how efficient the suggested approach was. This study demonstrates that the traditional Long-Short Term Memory (LSTM) technique achieved 91.94% accuracy on the input images, but the hybrid pre-processing model with CNN achieved 95.06 percent accuracy.
期刊介绍:
The purpose of the Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology is to foster advancements of knowledge and help disseminate results concerning recent applications and case studies in the areas of fuzzy logic, intelligent systems, and web-based applications among working professionals and professionals in education and research, covering a broad cross-section of technical disciplines.