优化的基于深度学习的车联网入侵检测框架

IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Ravula Vishnukumar, Mangayarkarasi Ramaiah
{"title":"优化的基于深度学习的车联网入侵检测框架","authors":"Ravula Vishnukumar, Mangayarkarasi Ramaiah","doi":"10.3233/jifs-233581","DOIUrl":null,"url":null,"abstract":"The Internet’s evolution resulted in a massive amount of data. As a result, the internet has become more sophisticated and vulnerable to massive attacks. The attack detection system is a key feature for system security in modern networks. The IDS might be signature-based or detect anomalous behavior. Researchers recently created several detection algorithms for identifying network intrusions in vehicular network security, but they failed to detect intrusions effectively. For this reason, the optimal Deep Learning approach, namely Political Fractional Dingo Optimizer (PFDOX)-based Deep belief network is introduced for attack detection in network security for vehicles. The Internet of Vehicle simulation is done initially, and then the input data is passed into the pre-processing phase, which removes noise present in the data. Then, the feature extraction module receives the pre-processed data. The Deep Maxout Network is trained using the Fractional Dingo optimizer (FDOX)is utilized to detect normal and abnormal behavior. Fractional calculus and Dingo optimizer (DOX) are combined to create the proposed FDOX. Finally, intruder/attack types are classified using the Deep Belief Network, which is tuned using the PFDOX. The PFDOX is created by the assimilation of the DOX, Fractional Calculus, and Political Optimizer (PO). The experimental result shows that the designed PFDOX_DBN for attack type classification offers a better result based on f-measure, precision, and recall with the values of 0.924, 0.916, and 0.932, for the CIC-IDS2017 dataset.","PeriodicalId":54795,"journal":{"name":"Journal of Intelligent & Fuzzy Systems","volume":"12 4","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimized deep learning-based intrusion detection framework for vehicular network\",\"authors\":\"Ravula Vishnukumar, Mangayarkarasi Ramaiah\",\"doi\":\"10.3233/jifs-233581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Internet’s evolution resulted in a massive amount of data. As a result, the internet has become more sophisticated and vulnerable to massive attacks. The attack detection system is a key feature for system security in modern networks. The IDS might be signature-based or detect anomalous behavior. Researchers recently created several detection algorithms for identifying network intrusions in vehicular network security, but they failed to detect intrusions effectively. For this reason, the optimal Deep Learning approach, namely Political Fractional Dingo Optimizer (PFDOX)-based Deep belief network is introduced for attack detection in network security for vehicles. The Internet of Vehicle simulation is done initially, and then the input data is passed into the pre-processing phase, which removes noise present in the data. Then, the feature extraction module receives the pre-processed data. The Deep Maxout Network is trained using the Fractional Dingo optimizer (FDOX)is utilized to detect normal and abnormal behavior. Fractional calculus and Dingo optimizer (DOX) are combined to create the proposed FDOX. Finally, intruder/attack types are classified using the Deep Belief Network, which is tuned using the PFDOX. The PFDOX is created by the assimilation of the DOX, Fractional Calculus, and Political Optimizer (PO). The experimental result shows that the designed PFDOX_DBN for attack type classification offers a better result based on f-measure, precision, and recall with the values of 0.924, 0.916, and 0.932, for the CIC-IDS2017 dataset.\",\"PeriodicalId\":54795,\"journal\":{\"name\":\"Journal of Intelligent & Fuzzy Systems\",\"volume\":\"12 4\",\"pages\":\"0\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent & Fuzzy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/jifs-233581\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent & Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jifs-233581","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

互联网的发展产生了海量的数据。因此,互联网变得更加复杂,更容易受到大规模攻击。攻击检测系统是现代网络系统安全的重要组成部分。IDS可以是基于签名的,也可以检测异常行为。研究人员最近创建了几种检测算法来识别车载网络安全中的网络入侵,但它们都不能有效地检测入侵。为此,引入最优深度学习方法,即基于PFDOX (Political Fractional Dingo Optimizer)的深度信念网络,用于车辆网络安全中的攻击检测。首先进行车联网仿真,然后将输入数据传递到预处理阶段,去除数据中的噪声。特征提取模块接收预处理后的数据。Deep Maxout网络使用分数式Dingo优化器(FDOX)进行训练,用于检测正常和异常行为。分数阶微积分和Dingo优化器(DOX)相结合,创建了所提出的FDOX。最后,使用深度信念网络对入侵者/攻击类型进行分类,该网络使用PFDOX进行调优。PFDOX是由DOX、分数微积分和政治优化器(PO)的融合而成的。实验结果表明,针对CIC-IDS2017数据集,所设计的攻击类型分类PFDOX_DBN在f-measure、precision和recall三个指标上具有较好的分类效果,分别为0.924、0.916和0.932。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimized deep learning-based intrusion detection framework for vehicular network
The Internet’s evolution resulted in a massive amount of data. As a result, the internet has become more sophisticated and vulnerable to massive attacks. The attack detection system is a key feature for system security in modern networks. The IDS might be signature-based or detect anomalous behavior. Researchers recently created several detection algorithms for identifying network intrusions in vehicular network security, but they failed to detect intrusions effectively. For this reason, the optimal Deep Learning approach, namely Political Fractional Dingo Optimizer (PFDOX)-based Deep belief network is introduced for attack detection in network security for vehicles. The Internet of Vehicle simulation is done initially, and then the input data is passed into the pre-processing phase, which removes noise present in the data. Then, the feature extraction module receives the pre-processed data. The Deep Maxout Network is trained using the Fractional Dingo optimizer (FDOX)is utilized to detect normal and abnormal behavior. Fractional calculus and Dingo optimizer (DOX) are combined to create the proposed FDOX. Finally, intruder/attack types are classified using the Deep Belief Network, which is tuned using the PFDOX. The PFDOX is created by the assimilation of the DOX, Fractional Calculus, and Political Optimizer (PO). The experimental result shows that the designed PFDOX_DBN for attack type classification offers a better result based on f-measure, precision, and recall with the values of 0.924, 0.916, and 0.932, for the CIC-IDS2017 dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Intelligent & Fuzzy Systems
Journal of Intelligent & Fuzzy Systems 工程技术-计算机:人工智能
CiteScore
3.40
自引率
10.00%
发文量
965
审稿时长
5.1 months
期刊介绍: The purpose of the Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology is to foster advancements of knowledge and help disseminate results concerning recent applications and case studies in the areas of fuzzy logic, intelligent systems, and web-based applications among working professionals and professionals in education and research, covering a broad cross-section of technical disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信