声压球面远场数值积分新算法的应用

IF 1.3 Q3 ACOUSTICS
Stjepan Piličić, Ante Skoblar, Roberto Žigulić, Luka Traven
{"title":"声压球面远场数值积分新算法的应用","authors":"Stjepan Piličić, Ante Skoblar, Roberto Žigulić, Luka Traven","doi":"10.3390/acoustics5040057","DOIUrl":null,"url":null,"abstract":"For some sound sources, the function of the square of sound pressure amplitudes on the sphere in the far field is an integrable function or can be integrated with geometrical simplifications, so an exact or approximated analytical expression for the sound power can be calculated. However, often the sound pressure on the sphere in the far field can only be defined in discrete points, for which a numerical integration is required for the calculation of the sound power. In this paper, two new algorithms, Anchored Radially Projected Integration on Spherical Triangles (ARPIST) and Spherical Quadrature Radial Basis Function (SQRBF), for surface numerical integration are used to calculate the sound power from the sound pressures on the sphere surface in the far field, and their solutions are compared with the analytical and the finite element method solution. If function values are available at any location on a sphere, ARPIST has a greater accuracy and stability than SQRBF while being faster and easier to implement. If function values are available only at user-prescribed locations, SQRBF can directly calculate weights while ARPIST needs data interpolation to obtain function values at predefined node locations, which reduces the accuracy and increases the calculation time.","PeriodicalId":72045,"journal":{"name":"Acoustics (Basel, Switzerland)","volume":"8 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Applying New Algorithms for Numerical Integration on the Sphere in the Far Field of Sound Pressure\",\"authors\":\"Stjepan Piličić, Ante Skoblar, Roberto Žigulić, Luka Traven\",\"doi\":\"10.3390/acoustics5040057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For some sound sources, the function of the square of sound pressure amplitudes on the sphere in the far field is an integrable function or can be integrated with geometrical simplifications, so an exact or approximated analytical expression for the sound power can be calculated. However, often the sound pressure on the sphere in the far field can only be defined in discrete points, for which a numerical integration is required for the calculation of the sound power. In this paper, two new algorithms, Anchored Radially Projected Integration on Spherical Triangles (ARPIST) and Spherical Quadrature Radial Basis Function (SQRBF), for surface numerical integration are used to calculate the sound power from the sound pressures on the sphere surface in the far field, and their solutions are compared with the analytical and the finite element method solution. If function values are available at any location on a sphere, ARPIST has a greater accuracy and stability than SQRBF while being faster and easier to implement. If function values are available only at user-prescribed locations, SQRBF can directly calculate weights while ARPIST needs data interpolation to obtain function values at predefined node locations, which reduces the accuracy and increases the calculation time.\",\"PeriodicalId\":72045,\"journal\":{\"name\":\"Acoustics (Basel, Switzerland)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acoustics (Basel, Switzerland)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/acoustics5040057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acoustics (Basel, Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/acoustics5040057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

对于某些声源,远场声压幅值在球面上的平方函数是一个可积函数,或者可以通过几何简化进行积分,因此可以计算出声功率的精确或近似解析表达式。然而,球在远场上的声压往往只能在离散点上定义,因此需要对其进行数值积分来计算声功率。本文采用球面三角形锚定径向投影积分法(arist)和球面正交径向基函数(SQRBF)两种曲面数值积分算法,从球面上的声压计算远场声功率,并将其解与解析法和有限元法的解进行了比较。如果函数值在球面上的任何位置都可用,则arist比SQRBF具有更高的精度和稳定性,同时更快,更容易实现。如果函数值仅在用户指定的位置可用,则SQRBF可以直接计算权值,而arist需要数据插值才能在预定义的节点位置获得函数值,这降低了精度,增加了计算时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Applying New Algorithms for Numerical Integration on the Sphere in the Far Field of Sound Pressure
For some sound sources, the function of the square of sound pressure amplitudes on the sphere in the far field is an integrable function or can be integrated with geometrical simplifications, so an exact or approximated analytical expression for the sound power can be calculated. However, often the sound pressure on the sphere in the far field can only be defined in discrete points, for which a numerical integration is required for the calculation of the sound power. In this paper, two new algorithms, Anchored Radially Projected Integration on Spherical Triangles (ARPIST) and Spherical Quadrature Radial Basis Function (SQRBF), for surface numerical integration are used to calculate the sound power from the sound pressures on the sphere surface in the far field, and their solutions are compared with the analytical and the finite element method solution. If function values are available at any location on a sphere, ARPIST has a greater accuracy and stability than SQRBF while being faster and easier to implement. If function values are available only at user-prescribed locations, SQRBF can directly calculate weights while ARPIST needs data interpolation to obtain function values at predefined node locations, which reduces the accuracy and increases the calculation time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
0
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信