准经典基态。1 .线性耦合Pauli-Fierz hamilton量

IF 0.9 3区 数学 Q2 MATHEMATICS
Sébastien Breteaux, Jérémy Faupin, Jimmy Payet
{"title":"准经典基态。1 .线性耦合Pauli-Fierz hamilton量","authors":"Sébastien Breteaux, Jérémy Faupin, Jimmy Payet","doi":"10.4171/dm/929","DOIUrl":null,"url":null,"abstract":"We consider a spinless, non-relativistic particle bound by an external potential and linearly coupled to a quantized radiation field. The energy $\\mathcal{E}(u,f)$ of product states of the form $u\\otimes \\Psi_f$, where $u$ is a normalized state for the particle and $\\Psi_f$ is a coherent state in Fock space for the field, gives the energy of a Klein-Gordon--Schr\\''odinger system. We minimize the functional $\\mathcal{E}(u,f)$ on its natural energy space. We prove the existence and uniqueness of a ground state under general conditions on the coupling function. In particular, neither an ultraviolet cutoff nor an infrared cutoff is imposed. Our results establish the convergence in the ultraviolet limit of both the ground state and ground state energy of the Klein-Gordon--Schr\\''odinger energy functional, and provide the second-order asymptotic expansion of the ground state energy at small coupling.","PeriodicalId":50567,"journal":{"name":"Documenta Mathematica","volume":"4 24","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quasi-classical ground states. I. Linearly coupled Pauli–Fierz Hamiltonians\",\"authors\":\"Sébastien Breteaux, Jérémy Faupin, Jimmy Payet\",\"doi\":\"10.4171/dm/929\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a spinless, non-relativistic particle bound by an external potential and linearly coupled to a quantized radiation field. The energy $\\\\mathcal{E}(u,f)$ of product states of the form $u\\\\otimes \\\\Psi_f$, where $u$ is a normalized state for the particle and $\\\\Psi_f$ is a coherent state in Fock space for the field, gives the energy of a Klein-Gordon--Schr\\\\''odinger system. We minimize the functional $\\\\mathcal{E}(u,f)$ on its natural energy space. We prove the existence and uniqueness of a ground state under general conditions on the coupling function. In particular, neither an ultraviolet cutoff nor an infrared cutoff is imposed. Our results establish the convergence in the ultraviolet limit of both the ground state and ground state energy of the Klein-Gordon--Schr\\\\''odinger energy functional, and provide the second-order asymptotic expansion of the ground state energy at small coupling.\",\"PeriodicalId\":50567,\"journal\":{\"name\":\"Documenta Mathematica\",\"volume\":\"4 24\",\"pages\":\"0\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Documenta Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/dm/929\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Documenta Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/dm/929","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑一个无自旋的非相对论性粒子,它被一个外部势束缚并与量子化的辐射场线性耦合。形式为$u\otimes \Psi_f$的乘积态的能量$\mathcal{E}(u,f)$,其中$u$是粒子的归一化状态,$\Psi_f$是场在Fock空间中的相干状态,给出了Klein-Gordon- Schr\ odinger系统的能量。我们在其自然能量空间上最小化函数$\mathcal{E}(u,f)$。证明了耦合函数在一般条件下基态的存在唯一性。特别是,既不施加紫外截止,也不施加红外截止。我们的结果建立了Klein-Gordon- Schr\ odinger能量泛函的基态和基态能量在紫外极限处的收敛性,并提供了小耦合下基态能量的二阶渐近展开式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quasi-classical ground states. I. Linearly coupled Pauli–Fierz Hamiltonians
We consider a spinless, non-relativistic particle bound by an external potential and linearly coupled to a quantized radiation field. The energy $\mathcal{E}(u,f)$ of product states of the form $u\otimes \Psi_f$, where $u$ is a normalized state for the particle and $\Psi_f$ is a coherent state in Fock space for the field, gives the energy of a Klein-Gordon--Schr\''odinger system. We minimize the functional $\mathcal{E}(u,f)$ on its natural energy space. We prove the existence and uniqueness of a ground state under general conditions on the coupling function. In particular, neither an ultraviolet cutoff nor an infrared cutoff is imposed. Our results establish the convergence in the ultraviolet limit of both the ground state and ground state energy of the Klein-Gordon--Schr\''odinger energy functional, and provide the second-order asymptotic expansion of the ground state energy at small coupling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Documenta Mathematica
Documenta Mathematica 数学-数学
CiteScore
1.60
自引率
11.10%
发文量
0
审稿时长
>12 weeks
期刊介绍: DOCUMENTA MATHEMATICA is open to all mathematical fields und internationally oriented Documenta Mathematica publishes excellent and carefully refereed articles of general interest, which preferably should rely only on refereed sources and references.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信