{"title":"基于卷积分块注意模块和多特征融合的面部表情识别","authors":"Man Jiang, Shoulin Yin","doi":"10.1504/ijcvr.2023.127298","DOIUrl":null,"url":null,"abstract":"In this paper, we focus on the research of facial expression recognition. A novel convolutional block attention module and multi-feature fusion method are proposed for facial expression recognition. The local feature clustering loss function is proposed, which can reduce the difference between the same classes of images and enlarge the difference between different classes of images in the training process. The convolutional block attention module is adopted to better express facial expressions in local areas with rich expressions. Experimental results show that the proposed method can effectively recognise different expressions on the RAF dataset and CK+ dataset compared with other state-of-the-art methods.","PeriodicalId":38525,"journal":{"name":"International Journal of Computational Vision and Robotics","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Facial expression recognition based on convolutional block attention module and multi-feature fusion\",\"authors\":\"Man Jiang, Shoulin Yin\",\"doi\":\"10.1504/ijcvr.2023.127298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we focus on the research of facial expression recognition. A novel convolutional block attention module and multi-feature fusion method are proposed for facial expression recognition. The local feature clustering loss function is proposed, which can reduce the difference between the same classes of images and enlarge the difference between different classes of images in the training process. The convolutional block attention module is adopted to better express facial expressions in local areas with rich expressions. Experimental results show that the proposed method can effectively recognise different expressions on the RAF dataset and CK+ dataset compared with other state-of-the-art methods.\",\"PeriodicalId\":38525,\"journal\":{\"name\":\"International Journal of Computational Vision and Robotics\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computational Vision and Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijcvr.2023.127298\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Vision and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijcvr.2023.127298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
Facial expression recognition based on convolutional block attention module and multi-feature fusion
In this paper, we focus on the research of facial expression recognition. A novel convolutional block attention module and multi-feature fusion method are proposed for facial expression recognition. The local feature clustering loss function is proposed, which can reduce the difference between the same classes of images and enlarge the difference between different classes of images in the training process. The convolutional block attention module is adopted to better express facial expressions in local areas with rich expressions. Experimental results show that the proposed method can effectively recognise different expressions on the RAF dataset and CK+ dataset compared with other state-of-the-art methods.