{"title":"之字形持久模的派生范畴的代数稳定性定理","authors":"Yasuaki Hiraoka, Yuichi Ike, Michio Yoshiwaki","doi":"10.1142/s1793525323500292","DOIUrl":null,"url":null,"abstract":"We study distances on zigzag persistence modules from the viewpoint of derived categories and Auslander–Reiten quivers. The derived category of ordinary persistence modules is derived equivalent to that of arbitrary zigzag persistence modules, depending on a classical tilting module. Through this derived equivalence, we define and compute distances on the derived category of arbitrary zigzag persistence modules and prove an algebraic stability theorem. We also compare our distance with the distance for purely zigzag persistence modules introduced by Botnan–Lesnick and the sheaf-theoretic convolution distance due to Kashiwara–Schapira.","PeriodicalId":49151,"journal":{"name":"Journal of Topology and Analysis","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algebraic stability theorem for derived categories of zigzag persistence modules\",\"authors\":\"Yasuaki Hiraoka, Yuichi Ike, Michio Yoshiwaki\",\"doi\":\"10.1142/s1793525323500292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study distances on zigzag persistence modules from the viewpoint of derived categories and Auslander–Reiten quivers. The derived category of ordinary persistence modules is derived equivalent to that of arbitrary zigzag persistence modules, depending on a classical tilting module. Through this derived equivalence, we define and compute distances on the derived category of arbitrary zigzag persistence modules and prove an algebraic stability theorem. We also compare our distance with the distance for purely zigzag persistence modules introduced by Botnan–Lesnick and the sheaf-theoretic convolution distance due to Kashiwara–Schapira.\",\"PeriodicalId\":49151,\"journal\":{\"name\":\"Journal of Topology and Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Topology and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793525323500292\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Topology and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1793525323500292","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Algebraic stability theorem for derived categories of zigzag persistence modules
We study distances on zigzag persistence modules from the viewpoint of derived categories and Auslander–Reiten quivers. The derived category of ordinary persistence modules is derived equivalent to that of arbitrary zigzag persistence modules, depending on a classical tilting module. Through this derived equivalence, we define and compute distances on the derived category of arbitrary zigzag persistence modules and prove an algebraic stability theorem. We also compare our distance with the distance for purely zigzag persistence modules introduced by Botnan–Lesnick and the sheaf-theoretic convolution distance due to Kashiwara–Schapira.
期刊介绍:
This journal is devoted to topology and analysis, broadly defined to include, for instance, differential geometry, geometric topology, geometric analysis, geometric group theory, index theory, noncommutative geometry, and aspects of probability on discrete structures, and geometry of Banach spaces. We welcome all excellent papers that have a geometric and/or analytic flavor that fosters the interactions between these fields. Papers published in this journal should break new ground or represent definitive progress on problems of current interest. On rare occasion, we will also accept survey papers.