结合机器学习和指纹方法的过程控制

IF 0.6 Q4 ENGINEERING, MECHANICAL
A. Garnier, C. Cecchinel, X. Beudaert
{"title":"结合机器学习和指纹方法的过程控制","authors":"A. Garnier, C. Cecchinel, X. Beudaert","doi":"10.17973/mmsj.2023_11_2023119","DOIUrl":null,"url":null,"abstract":"Manufacturing operations in large machine tools often requires several hours per part. Ensuring output quality is vital to avoid time and financial losses. While quality assurance was always problematic and costly, the recent advent of Industry 4.0 brought a new perspective to the problem as cutting machines are now fully digitized. This paper proposes a process control framework that combines a fingerprint approach that detects deviations with respect to the validated process and a Long Short-Term Memory (LSTM) algorithm that predicts the upcoming signals. This paper demonstrates how combining these two methodologies surpasses the performance of previous purely learning-based algorithms.","PeriodicalId":18723,"journal":{"name":"MM Science Journal","volume":"11 5","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PROCESS CONTROL COMBINING MACHINE LEARNING AND FINGERPRINT APPROACHES\",\"authors\":\"A. Garnier, C. Cecchinel, X. Beudaert\",\"doi\":\"10.17973/mmsj.2023_11_2023119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Manufacturing operations in large machine tools often requires several hours per part. Ensuring output quality is vital to avoid time and financial losses. While quality assurance was always problematic and costly, the recent advent of Industry 4.0 brought a new perspective to the problem as cutting machines are now fully digitized. This paper proposes a process control framework that combines a fingerprint approach that detects deviations with respect to the validated process and a Long Short-Term Memory (LSTM) algorithm that predicts the upcoming signals. This paper demonstrates how combining these two methodologies surpasses the performance of previous purely learning-based algorithms.\",\"PeriodicalId\":18723,\"journal\":{\"name\":\"MM Science Journal\",\"volume\":\"11 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MM Science Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17973/mmsj.2023_11_2023119\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MM Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17973/mmsj.2023_11_2023119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

在大型机床上制造一个零件通常需要几个小时。确保产出质量对于避免时间和经济损失至关重要。虽然质量保证一直存在问题且成本高昂,但最近工业4.0的出现为切割机的完全数字化带来了新的视角。本文提出了一种过程控制框架,该框架结合了一种检测与验证过程相关的偏差的指纹方法和一种预测即将到来的信号的长短期记忆(LSTM)算法。本文展示了这两种方法的结合如何超越了以前纯粹基于学习的算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PROCESS CONTROL COMBINING MACHINE LEARNING AND FINGERPRINT APPROACHES
Manufacturing operations in large machine tools often requires several hours per part. Ensuring output quality is vital to avoid time and financial losses. While quality assurance was always problematic and costly, the recent advent of Industry 4.0 brought a new perspective to the problem as cutting machines are now fully digitized. This paper proposes a process control framework that combines a fingerprint approach that detects deviations with respect to the validated process and a Long Short-Term Memory (LSTM) algorithm that predicts the upcoming signals. This paper demonstrates how combining these two methodologies surpasses the performance of previous purely learning-based algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
MM Science Journal
MM Science Journal ENGINEERING, MECHANICAL-
CiteScore
1.30
自引率
42.90%
发文量
96
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信