映射类组中的一般原语

IF 0.5 3区 数学 Q3 MATHEMATICS
Pankaj Kapari, Kashyap Rajeevsarathy
{"title":"映射类组中的一般原语","authors":"Pankaj Kapari, Kashyap Rajeevsarathy","doi":"10.1142/s1793525323500541","DOIUrl":null,"url":null,"abstract":"For $g\\geq 2$, let $\\text{Mod}(S_g)$ be the mapping class group of the closed orientable surface $S_g$ of genus $g$. In this paper, we obtain necessary and sufficient conditions under which a given pseudo-periodic mapping can be a root of another up to conjugacy. Using this characterization, the canonical decomposition of (non-periodic) mapping classes, and some known algorithms, we give a theoretical algorithm for computing its roots up to conjugacy. Furthermore, we derive realizable bounds on the degrees of roots of pseudo-periodic mapping classes in $\\text{Mod}(S_g)$, the Torelli group, the level-$m$ subgroup of $\\text{Mod}(S_g)$, and the commutator subgroup of $\\text{Mod}(S_2)$. In particular, we show that the highest possible (realizable) degree of a root of a pseudo-periodic mapping class $F$ is $3q(F)(g+1)(g+2)$, realized by the roots of $T_c^{q(F)}$, where $c$ is a separating curve in $S_g$ of genus $[g/2]$ and $q(F)$ is a unique positive integer associated with the conjugacy class of $F$. Finally, for $g\\geq 3$ we show that any pseudo-periodic having a nontrivial periodic component that is not the hyperelliptic involution, normally generates $\\text{Mod}(S_g)$. Consequently, we establish there always exist roots of bounding pair maps and powers of Dehn twists that normally generate $\\text{Mod}(S_g)$.","PeriodicalId":49151,"journal":{"name":"Journal of Topology and Analysis","volume":"10 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"General primitivity in the mapping class group\",\"authors\":\"Pankaj Kapari, Kashyap Rajeevsarathy\",\"doi\":\"10.1142/s1793525323500541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For $g\\\\geq 2$, let $\\\\text{Mod}(S_g)$ be the mapping class group of the closed orientable surface $S_g$ of genus $g$. In this paper, we obtain necessary and sufficient conditions under which a given pseudo-periodic mapping can be a root of another up to conjugacy. Using this characterization, the canonical decomposition of (non-periodic) mapping classes, and some known algorithms, we give a theoretical algorithm for computing its roots up to conjugacy. Furthermore, we derive realizable bounds on the degrees of roots of pseudo-periodic mapping classes in $\\\\text{Mod}(S_g)$, the Torelli group, the level-$m$ subgroup of $\\\\text{Mod}(S_g)$, and the commutator subgroup of $\\\\text{Mod}(S_2)$. In particular, we show that the highest possible (realizable) degree of a root of a pseudo-periodic mapping class $F$ is $3q(F)(g+1)(g+2)$, realized by the roots of $T_c^{q(F)}$, where $c$ is a separating curve in $S_g$ of genus $[g/2]$ and $q(F)$ is a unique positive integer associated with the conjugacy class of $F$. Finally, for $g\\\\geq 3$ we show that any pseudo-periodic having a nontrivial periodic component that is not the hyperelliptic involution, normally generates $\\\\text{Mod}(S_g)$. Consequently, we establish there always exist roots of bounding pair maps and powers of Dehn twists that normally generate $\\\\text{Mod}(S_g)$.\",\"PeriodicalId\":49151,\"journal\":{\"name\":\"Journal of Topology and Analysis\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Topology and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793525323500541\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Topology and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1793525323500541","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

对于$g\geq 2$,设$\text{Mod}(S_g)$为属$g$的闭合可定向曲面$S_g$的映射类群。本文给出了一个给定的伪周期映射可以是另一个伪周期映射的根直至共轭的充分必要条件。利用这一表征、(非周期)映射类的正则分解和一些已知的算法,我们给出了计算其根直至共轭的理论算法。进一步,我们推导了$\text{Mod}(S_g)$、$\text{Mod}(S_g)$的Torelli群、的level- $m$子群和$\text{Mod}(S_2)$的对易子群中伪周期映射类的根度的可实现界。特别地,我们证明了伪周期映射类$F$的根的最高可能(可实现)度是$3q(F)(g+1)(g+2)$,由$T_c^{q(F)}$的根实现,其中$c$是$[g/2]$属的$S_g$中的分离曲线,$q(F)$是与$F$的共轭类相关的唯一正整数。最后,对于$g\geq 3$,我们证明了任何具有非平凡周期分量且非超椭圆对合的伪周期通常生成$\text{Mod}(S_g)$。因此,我们建立了边界对映射总是存在根和通常生成$\text{Mod}(S_g)$的Dehn扭转的幂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
General primitivity in the mapping class group
For $g\geq 2$, let $\text{Mod}(S_g)$ be the mapping class group of the closed orientable surface $S_g$ of genus $g$. In this paper, we obtain necessary and sufficient conditions under which a given pseudo-periodic mapping can be a root of another up to conjugacy. Using this characterization, the canonical decomposition of (non-periodic) mapping classes, and some known algorithms, we give a theoretical algorithm for computing its roots up to conjugacy. Furthermore, we derive realizable bounds on the degrees of roots of pseudo-periodic mapping classes in $\text{Mod}(S_g)$, the Torelli group, the level-$m$ subgroup of $\text{Mod}(S_g)$, and the commutator subgroup of $\text{Mod}(S_2)$. In particular, we show that the highest possible (realizable) degree of a root of a pseudo-periodic mapping class $F$ is $3q(F)(g+1)(g+2)$, realized by the roots of $T_c^{q(F)}$, where $c$ is a separating curve in $S_g$ of genus $[g/2]$ and $q(F)$ is a unique positive integer associated with the conjugacy class of $F$. Finally, for $g\geq 3$ we show that any pseudo-periodic having a nontrivial periodic component that is not the hyperelliptic involution, normally generates $\text{Mod}(S_g)$. Consequently, we establish there always exist roots of bounding pair maps and powers of Dehn twists that normally generate $\text{Mod}(S_g)$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
13
审稿时长
>12 weeks
期刊介绍: This journal is devoted to topology and analysis, broadly defined to include, for instance, differential geometry, geometric topology, geometric analysis, geometric group theory, index theory, noncommutative geometry, and aspects of probability on discrete structures, and geometry of Banach spaces. We welcome all excellent papers that have a geometric and/or analytic flavor that fosters the interactions between these fields. Papers published in this journal should break new ground or represent definitive progress on problems of current interest. On rare occasion, we will also accept survey papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信