{"title":"从无限字上的有理规范合成可计算函数","authors":"Emmanuel Filiot, Sarah Winter","doi":"10.1142/s012905412348009x","DOIUrl":null,"url":null,"abstract":"The synthesis problem asks to automatically generate, if it exists, an algorithm from a specification of correct input-output pairs. In this paper, we consider the synthesis of computable functions of infinite words, for a classical Turing computability notion over infinite inputs. We consider specifications which are rational relations of infinite words, i.e., specifications defined by non-deterministic parity transducers. We prove that the synthesis problem of computable functions from rational specifications is undecidable. We provide an incomplete but sound reduction to some parity game, such that if Eve wins the game, then the rational specification is realizable by a computable function. We prove that this function is even computable by a deterministic two-way transducer. We provide a sufficient condition under which the latter game reduction is complete. This entails the decidability of the synthesis problem of computable functions, which we proved to be ExpTime-complete, for a large subclass of rational specifications, namely deterministic rational specifications. This subclass contains the class of automatic relations over infinite words, a yardstick in reactive synthesis.","PeriodicalId":50323,"journal":{"name":"International Journal of Foundations of Computer Science","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesizing Computable Functions from Rational Specifications Over Infinite Words\",\"authors\":\"Emmanuel Filiot, Sarah Winter\",\"doi\":\"10.1142/s012905412348009x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The synthesis problem asks to automatically generate, if it exists, an algorithm from a specification of correct input-output pairs. In this paper, we consider the synthesis of computable functions of infinite words, for a classical Turing computability notion over infinite inputs. We consider specifications which are rational relations of infinite words, i.e., specifications defined by non-deterministic parity transducers. We prove that the synthesis problem of computable functions from rational specifications is undecidable. We provide an incomplete but sound reduction to some parity game, such that if Eve wins the game, then the rational specification is realizable by a computable function. We prove that this function is even computable by a deterministic two-way transducer. We provide a sufficient condition under which the latter game reduction is complete. This entails the decidability of the synthesis problem of computable functions, which we proved to be ExpTime-complete, for a large subclass of rational specifications, namely deterministic rational specifications. This subclass contains the class of automatic relations over infinite words, a yardstick in reactive synthesis.\",\"PeriodicalId\":50323,\"journal\":{\"name\":\"International Journal of Foundations of Computer Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Foundations of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s012905412348009x\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s012905412348009x","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Synthesizing Computable Functions from Rational Specifications Over Infinite Words
The synthesis problem asks to automatically generate, if it exists, an algorithm from a specification of correct input-output pairs. In this paper, we consider the synthesis of computable functions of infinite words, for a classical Turing computability notion over infinite inputs. We consider specifications which are rational relations of infinite words, i.e., specifications defined by non-deterministic parity transducers. We prove that the synthesis problem of computable functions from rational specifications is undecidable. We provide an incomplete but sound reduction to some parity game, such that if Eve wins the game, then the rational specification is realizable by a computable function. We prove that this function is even computable by a deterministic two-way transducer. We provide a sufficient condition under which the latter game reduction is complete. This entails the decidability of the synthesis problem of computable functions, which we proved to be ExpTime-complete, for a large subclass of rational specifications, namely deterministic rational specifications. This subclass contains the class of automatic relations over infinite words, a yardstick in reactive synthesis.
期刊介绍:
The International Journal of Foundations of Computer Science is a bimonthly journal that publishes articles which contribute new theoretical results in all areas of the foundations of computer science. The theoretical and mathematical aspects covered include:
- Algebraic theory of computing and formal systems
- Algorithm and system implementation issues
- Approximation, probabilistic, and randomized algorithms
- Automata and formal languages
- Automated deduction
- Combinatorics and graph theory
- Complexity theory
- Computational biology and bioinformatics
- Cryptography
- Database theory
- Data structures
- Design and analysis of algorithms
- DNA computing
- Foundations of computer security
- Foundations of high-performance computing