Ashot Aleksian, Pierre Del Moral, Aline Kurtzmann, Julian Tugaut
{"title":"自相互作用扩散:均匀凸情况下的长时间行为和退出问题","authors":"Ashot Aleksian, Pierre Del Moral, Aline Kurtzmann, Julian Tugaut","doi":"10.1051/ps/2023020","DOIUrl":null,"url":null,"abstract":"We study a class of time-inhomogeneous diffusion: the self-interacting one. We show a convergence result with a rate of convergence that does not depend on the diffusion coefficient. Finally, we establish a so-called Kramers' type law for the first exit-time of the process from domain of attractions when the landscapes are uniformly convex.","PeriodicalId":51249,"journal":{"name":"Esaim-Probability and Statistics","volume":"5 4","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-interacting diffusions: long-time behaviour and exit-problem in the uniformly convex case\",\"authors\":\"Ashot Aleksian, Pierre Del Moral, Aline Kurtzmann, Julian Tugaut\",\"doi\":\"10.1051/ps/2023020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study a class of time-inhomogeneous diffusion: the self-interacting one. We show a convergence result with a rate of convergence that does not depend on the diffusion coefficient. Finally, we establish a so-called Kramers' type law for the first exit-time of the process from domain of attractions when the landscapes are uniformly convex.\",\"PeriodicalId\":51249,\"journal\":{\"name\":\"Esaim-Probability and Statistics\",\"volume\":\"5 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Esaim-Probability and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/ps/2023020\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Esaim-Probability and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/ps/2023020","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Self-interacting diffusions: long-time behaviour and exit-problem in the uniformly convex case
We study a class of time-inhomogeneous diffusion: the self-interacting one. We show a convergence result with a rate of convergence that does not depend on the diffusion coefficient. Finally, we establish a so-called Kramers' type law for the first exit-time of the process from domain of attractions when the landscapes are uniformly convex.
期刊介绍:
The journal publishes original research and survey papers in the area of Probability and Statistics. It covers theoretical and practical aspects, in any field of these domains.
Of particular interest are methodological developments with application in other scientific areas, for example Biology and Genetics, Information Theory, Finance, Bioinformatics, Random structures and Random graphs, Econometrics, Physics.
Long papers are very welcome.
Indeed, we intend to develop the journal in the direction of applications and to open it to various fields where random mathematical modelling is important. In particular we will call (survey) papers in these areas, in order to make the random community aware of important problems of both theoretical and practical interest. We all know that many recent fascinating developments in Probability and Statistics are coming from "the outside" and we think that ESAIM: P&S should be a good entry point for such exchanges. Of course this does not mean that the journal will be only devoted to practical aspects.