自相互作用扩散:均匀凸情况下的长时间行为和退出问题

IF 0.6 4区 数学 Q4 STATISTICS & PROBABILITY
Ashot Aleksian, Pierre Del Moral, Aline Kurtzmann, Julian Tugaut
{"title":"自相互作用扩散:均匀凸情况下的长时间行为和退出问题","authors":"Ashot Aleksian, Pierre Del Moral, Aline Kurtzmann, Julian Tugaut","doi":"10.1051/ps/2023020","DOIUrl":null,"url":null,"abstract":"We study a class of time-inhomogeneous diffusion: the self-interacting one. We show a convergence result with a rate of convergence that does not depend on the diffusion coefficient. Finally, we establish a so-called Kramers' type law for the first exit-time of the process from domain of attractions when the landscapes are uniformly convex.","PeriodicalId":51249,"journal":{"name":"Esaim-Probability and Statistics","volume":"5 4","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-interacting diffusions: long-time behaviour and exit-problem in the uniformly convex case\",\"authors\":\"Ashot Aleksian, Pierre Del Moral, Aline Kurtzmann, Julian Tugaut\",\"doi\":\"10.1051/ps/2023020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study a class of time-inhomogeneous diffusion: the self-interacting one. We show a convergence result with a rate of convergence that does not depend on the diffusion coefficient. Finally, we establish a so-called Kramers' type law for the first exit-time of the process from domain of attractions when the landscapes are uniformly convex.\",\"PeriodicalId\":51249,\"journal\":{\"name\":\"Esaim-Probability and Statistics\",\"volume\":\"5 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Esaim-Probability and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/ps/2023020\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Esaim-Probability and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/ps/2023020","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

研究了一类时间非齐次扩散:自相互作用扩散。我们给出了一个收敛速度不依赖于扩散系数的收敛结果。最后,在景观为均匀凸的情况下,我们建立了从吸引域开始的过程的第一退出时间的Kramers型定律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Self-interacting diffusions: long-time behaviour and exit-problem in the uniformly convex case
We study a class of time-inhomogeneous diffusion: the self-interacting one. We show a convergence result with a rate of convergence that does not depend on the diffusion coefficient. Finally, we establish a so-called Kramers' type law for the first exit-time of the process from domain of attractions when the landscapes are uniformly convex.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Esaim-Probability and Statistics
Esaim-Probability and Statistics STATISTICS & PROBABILITY-
CiteScore
1.00
自引率
0.00%
发文量
14
审稿时长
>12 weeks
期刊介绍: The journal publishes original research and survey papers in the area of Probability and Statistics. It covers theoretical and practical aspects, in any field of these domains. Of particular interest are methodological developments with application in other scientific areas, for example Biology and Genetics, Information Theory, Finance, Bioinformatics, Random structures and Random graphs, Econometrics, Physics. Long papers are very welcome. Indeed, we intend to develop the journal in the direction of applications and to open it to various fields where random mathematical modelling is important. In particular we will call (survey) papers in these areas, in order to make the random community aware of important problems of both theoretical and practical interest. We all know that many recent fascinating developments in Probability and Statistics are coming from "the outside" and we think that ESAIM: P&S should be a good entry point for such exchanges. Of course this does not mean that the journal will be only devoted to practical aspects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信