顶点算子代数的模类的Deligne张量积

McRae, Robert
{"title":"顶点算子代数的模类的Deligne张量积","authors":"McRae, Robert","doi":"10.48550/arxiv.2304.14023","DOIUrl":null,"url":null,"abstract":"We show that if $\\mathcal{U}$ and $\\mathcal{V}$ are locally finite abelian categories of modules for vertex operator algebras $U$ and $V$, respectively, then the Deligne tensor product of $\\mathcal{U}$ and $\\mathcal{V}$ can be realized as a certain category $\\mathcal{D}(\\mathcal{U},\\mathcal{V})$ of modules for the tensor product vertex operator algebra $U\\otimes V$. We also show that if $\\mathcal{U}$ and $\\mathcal{V}$ admit the braided tensor category structure of Huang-Lepowsky-Zhang, then $\\mathcal{D}(\\mathcal{U},\\mathcal{V})$ does as well under mild additional conditions, and that this braided tensor structure is equivalent to the natural braided tensor structure on a Deligne tensor product category. These results hold in particular when $\\mathcal{U}$ and $\\mathcal{V}$ are the categories of $C_1$-cofinite $U$- and $V$-modules, if these categories are closed under contragredients, in which case we show that $\\mathcal{D}(\\mathcal{U},\\mathcal{V})$ is the category of $C_1$-cofinite $U\\otimes V$-modules. If $U$ and $V$ are $\\mathbb{N}$-graded and $C_2$-cofinite, then we may take $\\mathcal{U}$ and $\\mathcal{V}$ to be the categories of all grading-restricted generalized $U$- and $V$-modules, respectively. Thus as an application, if the tensor categories of all modules for two $C_2$-cofinite vertex operator algebras are rigid, then so is the tensor category of all modules for the tensor product vertex operator algebra. We use this to prove that the representation categories of the even subalgebras of the symplectic fermion vertex operator superalgebras are non-semisimple modular tensor categories.","PeriodicalId":496270,"journal":{"name":"arXiv (Cornell University)","volume":"624 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deligne tensor products of categories of modules for vertex operator\\n algebras\",\"authors\":\"McRae, Robert\",\"doi\":\"10.48550/arxiv.2304.14023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that if $\\\\mathcal{U}$ and $\\\\mathcal{V}$ are locally finite abelian categories of modules for vertex operator algebras $U$ and $V$, respectively, then the Deligne tensor product of $\\\\mathcal{U}$ and $\\\\mathcal{V}$ can be realized as a certain category $\\\\mathcal{D}(\\\\mathcal{U},\\\\mathcal{V})$ of modules for the tensor product vertex operator algebra $U\\\\otimes V$. We also show that if $\\\\mathcal{U}$ and $\\\\mathcal{V}$ admit the braided tensor category structure of Huang-Lepowsky-Zhang, then $\\\\mathcal{D}(\\\\mathcal{U},\\\\mathcal{V})$ does as well under mild additional conditions, and that this braided tensor structure is equivalent to the natural braided tensor structure on a Deligne tensor product category. These results hold in particular when $\\\\mathcal{U}$ and $\\\\mathcal{V}$ are the categories of $C_1$-cofinite $U$- and $V$-modules, if these categories are closed under contragredients, in which case we show that $\\\\mathcal{D}(\\\\mathcal{U},\\\\mathcal{V})$ is the category of $C_1$-cofinite $U\\\\otimes V$-modules. If $U$ and $V$ are $\\\\mathbb{N}$-graded and $C_2$-cofinite, then we may take $\\\\mathcal{U}$ and $\\\\mathcal{V}$ to be the categories of all grading-restricted generalized $U$- and $V$-modules, respectively. Thus as an application, if the tensor categories of all modules for two $C_2$-cofinite vertex operator algebras are rigid, then so is the tensor category of all modules for the tensor product vertex operator algebra. We use this to prove that the representation categories of the even subalgebras of the symplectic fermion vertex operator superalgebras are non-semisimple modular tensor categories.\",\"PeriodicalId\":496270,\"journal\":{\"name\":\"arXiv (Cornell University)\",\"volume\":\"624 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv (Cornell University)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arxiv.2304.14023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv (Cornell University)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arxiv.2304.14023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了如果$\mathcal{U}$和$\mathcal{V}$分别是顶点算子代数$U$和$V$的模的局部有限阿贝尔范畴,那么$\mathcal{U}$和$\mathcal{V}$的Deligne张量积可以被实现为张量积顶点算子代数$U\ V$的模的一定范畴$\mathcal{D}(\mathcal{U},\mathcal{V})$。我们还证明了如果$\mathcal{U}$和$\mathcal{V}$承认Huang-Lepowsky-Zhang的编织张量范畴结构,则$\mathcal{D}(\mathcal{U},\mathcal{V})$在温和附加条件下也承认编织张量结构,并且该编织张量结构等价于Deligne张量积范畴上的自然编织张量结构。当$\mathcal{U}$和$\mathcal{V}$是$C_1$-有限$U$-和$V$-模的范畴时,这些结果特别成立,如果这些范畴在相合条件下闭合,在这种情况下,我们证明$\mathcal{D}(\mathcal{U},\mathcal{V})$是$C_1$-有限$U\乘以V$-模的范畴。如果$U$和$V$是$\mathbb{N}$-分级的和$C_2$-有限的,那么我们可以取$\mathcal{U}$和$\mathcal{V}$分别为所有分级限制的广义$U$-和$V$-模的范畴。因此,作为一个应用,如果两个$C_2$有限顶点算子代数的所有模的张量范畴是刚性的,那么张量积顶点算子代数的所有模的张量范畴也是刚性的。由此证明了辛费米子顶点算子超代数的偶子代数的表示范畴是非半单模张量范畴。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deligne tensor products of categories of modules for vertex operator algebras
We show that if $\mathcal{U}$ and $\mathcal{V}$ are locally finite abelian categories of modules for vertex operator algebras $U$ and $V$, respectively, then the Deligne tensor product of $\mathcal{U}$ and $\mathcal{V}$ can be realized as a certain category $\mathcal{D}(\mathcal{U},\mathcal{V})$ of modules for the tensor product vertex operator algebra $U\otimes V$. We also show that if $\mathcal{U}$ and $\mathcal{V}$ admit the braided tensor category structure of Huang-Lepowsky-Zhang, then $\mathcal{D}(\mathcal{U},\mathcal{V})$ does as well under mild additional conditions, and that this braided tensor structure is equivalent to the natural braided tensor structure on a Deligne tensor product category. These results hold in particular when $\mathcal{U}$ and $\mathcal{V}$ are the categories of $C_1$-cofinite $U$- and $V$-modules, if these categories are closed under contragredients, in which case we show that $\mathcal{D}(\mathcal{U},\mathcal{V})$ is the category of $C_1$-cofinite $U\otimes V$-modules. If $U$ and $V$ are $\mathbb{N}$-graded and $C_2$-cofinite, then we may take $\mathcal{U}$ and $\mathcal{V}$ to be the categories of all grading-restricted generalized $U$- and $V$-modules, respectively. Thus as an application, if the tensor categories of all modules for two $C_2$-cofinite vertex operator algebras are rigid, then so is the tensor category of all modules for the tensor product vertex operator algebra. We use this to prove that the representation categories of the even subalgebras of the symplectic fermion vertex operator superalgebras are non-semisimple modular tensor categories.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信