Hua Chai, Xuan Zhao, Qiang Yu, Shu Wang, Qi Han, Zichen Zheng
{"title":"基于路面坡度估算的插电式混合动力卡车自适应等效能耗最小化策略","authors":"Hua Chai, Xuan Zhao, Qiang Yu, Shu Wang, Qi Han, Zichen Zheng","doi":"10.1016/j.est.2023.108035","DOIUrl":null,"url":null,"abstract":"Road grade plays an important role in deciding power repartition and improving energy management performances. In this paper, instead of predictive energy management strategies where terrain information is obtained from GIS maps, an adaptive equivalent consumption minimization strategy (A-ECMS) considering current road grade information is proposed, aiming to design an instantaneous feedback supervisory controller based on the estimation of current road grade without using external devices. To achieve real-time control for a plug-in hybrid electric truck (PHET), the bounds of the optimal equivalent factor (EF) are analyzed considering comprehensive performances, then the sensitivity of EF is evaluated towards road grade. According to the effect of different road grade scenarios on control performances, the real-time EF adaptation is divided into two conditions, i.e. SOC-based adaptation and Estimation-based adaption. The proposed A-ECMS can achieve good performances on both fuel economy improvement and emission reduction, which approximates the results obtained from the DP algorithm, and the high computing load can be avoided for real-time implementation.","PeriodicalId":94331,"journal":{"name":"Journal of energy storage","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive equivalent consumption minimization strategy based on road grade estimation for a plug-in hybrid electric truck\",\"authors\":\"Hua Chai, Xuan Zhao, Qiang Yu, Shu Wang, Qi Han, Zichen Zheng\",\"doi\":\"10.1016/j.est.2023.108035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Road grade plays an important role in deciding power repartition and improving energy management performances. In this paper, instead of predictive energy management strategies where terrain information is obtained from GIS maps, an adaptive equivalent consumption minimization strategy (A-ECMS) considering current road grade information is proposed, aiming to design an instantaneous feedback supervisory controller based on the estimation of current road grade without using external devices. To achieve real-time control for a plug-in hybrid electric truck (PHET), the bounds of the optimal equivalent factor (EF) are analyzed considering comprehensive performances, then the sensitivity of EF is evaluated towards road grade. According to the effect of different road grade scenarios on control performances, the real-time EF adaptation is divided into two conditions, i.e. SOC-based adaptation and Estimation-based adaption. The proposed A-ECMS can achieve good performances on both fuel economy improvement and emission reduction, which approximates the results obtained from the DP algorithm, and the high computing load can be avoided for real-time implementation.\",\"PeriodicalId\":94331,\"journal\":{\"name\":\"Journal of energy storage\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of energy storage\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.est.2023.108035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of energy storage","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.est.2023.108035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adaptive equivalent consumption minimization strategy based on road grade estimation for a plug-in hybrid electric truck
Road grade plays an important role in deciding power repartition and improving energy management performances. In this paper, instead of predictive energy management strategies where terrain information is obtained from GIS maps, an adaptive equivalent consumption minimization strategy (A-ECMS) considering current road grade information is proposed, aiming to design an instantaneous feedback supervisory controller based on the estimation of current road grade without using external devices. To achieve real-time control for a plug-in hybrid electric truck (PHET), the bounds of the optimal equivalent factor (EF) are analyzed considering comprehensive performances, then the sensitivity of EF is evaluated towards road grade. According to the effect of different road grade scenarios on control performances, the real-time EF adaptation is divided into two conditions, i.e. SOC-based adaptation and Estimation-based adaption. The proposed A-ECMS can achieve good performances on both fuel economy improvement and emission reduction, which approximates the results obtained from the DP algorithm, and the high computing load can be avoided for real-time implementation.