{"title":"零流形交换自同构的指数多重混合","authors":"TIMOTHÉE BÉNARD, PÉTER P. VARJÚ","doi":"10.1017/etds.2023.73","DOIUrl":null,"url":null,"abstract":"Abstract Let $l\\in \\mathbb {N}_{\\ge 1}$ and $\\alpha : \\mathbb {Z}^l\\rightarrow \\text {Aut}(\\mathscr {N})$ be an action of $\\mathbb {Z}^l$ by automorphisms on a compact nilmanifold $\\mathscr{N}$ . We assume the action of every $\\alpha (z)$ is ergodic for $z\\in \\mathbb {Z}^l\\smallsetminus \\{0\\}$ and show that $\\alpha $ satisfies exponential n -mixing for any integer $n\\geq 2$ . This extends the results of Gorodnik and Spatzier [Mixing properties of commuting nilmanifold automorphisms. Acta Math. 215 (2015), 127–159].","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exponential multiple mixing for commuting automorphisms of a nilmanifold\",\"authors\":\"TIMOTHÉE BÉNARD, PÉTER P. VARJÚ\",\"doi\":\"10.1017/etds.2023.73\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let $l\\\\in \\\\mathbb {N}_{\\\\ge 1}$ and $\\\\alpha : \\\\mathbb {Z}^l\\\\rightarrow \\\\text {Aut}(\\\\mathscr {N})$ be an action of $\\\\mathbb {Z}^l$ by automorphisms on a compact nilmanifold $\\\\mathscr{N}$ . We assume the action of every $\\\\alpha (z)$ is ergodic for $z\\\\in \\\\mathbb {Z}^l\\\\smallsetminus \\\\{0\\\\}$ and show that $\\\\alpha $ satisfies exponential n -mixing for any integer $n\\\\geq 2$ . This extends the results of Gorodnik and Spatzier [Mixing properties of commuting nilmanifold automorphisms. Acta Math. 215 (2015), 127–159].\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/etds.2023.73\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/etds.2023.73","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Exponential multiple mixing for commuting automorphisms of a nilmanifold
Abstract Let $l\in \mathbb {N}_{\ge 1}$ and $\alpha : \mathbb {Z}^l\rightarrow \text {Aut}(\mathscr {N})$ be an action of $\mathbb {Z}^l$ by automorphisms on a compact nilmanifold $\mathscr{N}$ . We assume the action of every $\alpha (z)$ is ergodic for $z\in \mathbb {Z}^l\smallsetminus \{0\}$ and show that $\alpha $ satisfies exponential n -mixing for any integer $n\geq 2$ . This extends the results of Gorodnik and Spatzier [Mixing properties of commuting nilmanifold automorphisms. Acta Math. 215 (2015), 127–159].