零流形交换自同构的指数多重混合

Pub Date : 2023-10-11 DOI:10.1017/etds.2023.73
TIMOTHÉE BÉNARD, PÉTER P. VARJÚ
{"title":"零流形交换自同构的指数多重混合","authors":"TIMOTHÉE BÉNARD, PÉTER P. VARJÚ","doi":"10.1017/etds.2023.73","DOIUrl":null,"url":null,"abstract":"Abstract Let $l\\in \\mathbb {N}_{\\ge 1}$ and $\\alpha : \\mathbb {Z}^l\\rightarrow \\text {Aut}(\\mathscr {N})$ be an action of $\\mathbb {Z}^l$ by automorphisms on a compact nilmanifold $\\mathscr{N}$ . We assume the action of every $\\alpha (z)$ is ergodic for $z\\in \\mathbb {Z}^l\\smallsetminus \\{0\\}$ and show that $\\alpha $ satisfies exponential n -mixing for any integer $n\\geq 2$ . This extends the results of Gorodnik and Spatzier [Mixing properties of commuting nilmanifold automorphisms. Acta Math. 215 (2015), 127–159].","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exponential multiple mixing for commuting automorphisms of a nilmanifold\",\"authors\":\"TIMOTHÉE BÉNARD, PÉTER P. VARJÚ\",\"doi\":\"10.1017/etds.2023.73\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let $l\\\\in \\\\mathbb {N}_{\\\\ge 1}$ and $\\\\alpha : \\\\mathbb {Z}^l\\\\rightarrow \\\\text {Aut}(\\\\mathscr {N})$ be an action of $\\\\mathbb {Z}^l$ by automorphisms on a compact nilmanifold $\\\\mathscr{N}$ . We assume the action of every $\\\\alpha (z)$ is ergodic for $z\\\\in \\\\mathbb {Z}^l\\\\smallsetminus \\\\{0\\\\}$ and show that $\\\\alpha $ satisfies exponential n -mixing for any integer $n\\\\geq 2$ . This extends the results of Gorodnik and Spatzier [Mixing properties of commuting nilmanifold automorphisms. Acta Math. 215 (2015), 127–159].\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/etds.2023.73\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/etds.2023.73","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要设$l\in \mathbb {N}_{\ge 1}$和$\alpha : \mathbb {Z}^l\rightarrow \text {Aut}(\mathscr {N})$是紧零流形$\mathscr{N}$上的自同构作用$\mathbb {Z}^l$。我们假设对于$z\in \mathbb {Z}^l\smallsetminus \{0\}$,每个$\alpha (z)$的作用都是遍历的,并且证明对于任意整数$n\geq 2$, $\alpha $满足指数n混合。推广了Gorodnik和Spatzier[交换零流形自同构的混合性质]的结果。数学学报,215(2015),127-159。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Exponential multiple mixing for commuting automorphisms of a nilmanifold
Abstract Let $l\in \mathbb {N}_{\ge 1}$ and $\alpha : \mathbb {Z}^l\rightarrow \text {Aut}(\mathscr {N})$ be an action of $\mathbb {Z}^l$ by automorphisms on a compact nilmanifold $\mathscr{N}$ . We assume the action of every $\alpha (z)$ is ergodic for $z\in \mathbb {Z}^l\smallsetminus \{0\}$ and show that $\alpha $ satisfies exponential n -mixing for any integer $n\geq 2$ . This extends the results of Gorodnik and Spatzier [Mixing properties of commuting nilmanifold automorphisms. Acta Math. 215 (2015), 127–159].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信