某些部分双曲微分同态的-链闭引理

Pub Date : 2023-10-11 DOI:10.1017/etds.2023.71
YI SHI, XIAODONG WANG
{"title":"某些部分双曲微分同态的-链闭引理","authors":"YI SHI, XIAODONG WANG","doi":"10.1017/etds.2023.71","DOIUrl":null,"url":null,"abstract":"Abstract For every $r\\in \\mathbb {N}_{\\geq 2}\\cup \\{\\infty \\}$ , we prove a $C^r$ -orbit connecting lemma for dynamically coherent and plaque expansive partially hyperbolic diffeomorphisms with one-dimensional orientation preserving center bundle. To be precise, for such a diffeomorphism f , if a point y is chain attainable from x through pseudo-orbits, then for any neighborhood U of x and any neighborhood V of y , there exist true orbits from U to V by arbitrarily $C^r$ -small perturbations. As a consequence, we prove that for $C^r$ -generic diffeomorphisms in this class, periodic points are dense in the chain recurrent set, and chain transitivity implies transitivity.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"-chain closing lemma for certain partially hyperbolic diffeomorphisms\",\"authors\":\"YI SHI, XIAODONG WANG\",\"doi\":\"10.1017/etds.2023.71\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract For every $r\\\\in \\\\mathbb {N}_{\\\\geq 2}\\\\cup \\\\{\\\\infty \\\\}$ , we prove a $C^r$ -orbit connecting lemma for dynamically coherent and plaque expansive partially hyperbolic diffeomorphisms with one-dimensional orientation preserving center bundle. To be precise, for such a diffeomorphism f , if a point y is chain attainable from x through pseudo-orbits, then for any neighborhood U of x and any neighborhood V of y , there exist true orbits from U to V by arbitrarily $C^r$ -small perturbations. As a consequence, we prove that for $C^r$ -generic diffeomorphisms in this class, periodic points are dense in the chain recurrent set, and chain transitivity implies transitivity.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/etds.2023.71\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/etds.2023.71","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要对于每一个$r\in \mathbb {N}_{\geq 2}\cup \{\infty \}$,我们证明了具有一维中心束保持方向的动态相干和斑块扩张部分双曲微分同态的一个$C^r$ -轨道连接引理。准确地说,对于这样的微分同构f,如果点y是由x通过伪轨道链可得的,那么对于x的任意邻域U和y的任意邻域V,通过任意$C^r$ -小扰动,存在从U到V的真轨道。因此,我们证明了该类中$C^r$ -泛型微分同态的周期点在链递归集中是密集的,并且链可传递性意味着可传递性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
-chain closing lemma for certain partially hyperbolic diffeomorphisms
Abstract For every $r\in \mathbb {N}_{\geq 2}\cup \{\infty \}$ , we prove a $C^r$ -orbit connecting lemma for dynamically coherent and plaque expansive partially hyperbolic diffeomorphisms with one-dimensional orientation preserving center bundle. To be precise, for such a diffeomorphism f , if a point y is chain attainable from x through pseudo-orbits, then for any neighborhood U of x and any neighborhood V of y , there exist true orbits from U to V by arbitrarily $C^r$ -small perturbations. As a consequence, we prove that for $C^r$ -generic diffeomorphisms in this class, periodic points are dense in the chain recurrent set, and chain transitivity implies transitivity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信