固有安全在功能安全中的应用

IF 0.9 Q3 ENGINEERING, MULTIDISCIPLINARY
Peter Okoh
{"title":"固有安全在功能安全中的应用","authors":"Peter Okoh","doi":"10.1080/09617353.2023.2263727","DOIUrl":null,"url":null,"abstract":"AbstractFunctional safety has experienced evolution over the years aimed at further risk reduction in society. Changes have taken place in the form of the creation of new domain-specific standards such as ISO 26262 (automotive), EN 50129 (railway), ISO 13489 (machinery), etc. from the parent IEC 61508 standard. Besides, these standards also undergo periodic revisions to keep abreast of innovations in technology. As the technological space expands and increases in complexity, it needs more than procedural, passive and active risk reduction strategies to achieve optimal risk reduction due to potential deficiencies with the use of instruction manuals and physical safety barriers. Inherently safer design (ISD) is expected to bring about a consolidated and cost-effective risk reduction since it does not require the installation of degradable add-on features and can be applied across the product development life cycle. Hence, this paper aims to apply ISD to the functional safety aspect of safety system development according to IEC 61508. The paper focuses on hardware design and does not cover all aspects of active safety system design. The main objective is to investigate how ISD can reduce risk by reducing random and systematic failures. The paper builds on the review of literature and standards.Keywords: Inherent safetyfunctional safetyIEC 61508 Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationNotes on contributorsPeter OkohPeter Okoh holds a PhD in Reliability, Availability, Maintainability and Safety (RAMS). He studied at the Department of Mechanical and Industrial Engineering, at Norwegian University of Science and Technology, Trondheim, Norway.","PeriodicalId":45573,"journal":{"name":"International Journal of Reliability Quality and Safety Engineering","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The application of inherent safety to functional safety\",\"authors\":\"Peter Okoh\",\"doi\":\"10.1080/09617353.2023.2263727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractFunctional safety has experienced evolution over the years aimed at further risk reduction in society. Changes have taken place in the form of the creation of new domain-specific standards such as ISO 26262 (automotive), EN 50129 (railway), ISO 13489 (machinery), etc. from the parent IEC 61508 standard. Besides, these standards also undergo periodic revisions to keep abreast of innovations in technology. As the technological space expands and increases in complexity, it needs more than procedural, passive and active risk reduction strategies to achieve optimal risk reduction due to potential deficiencies with the use of instruction manuals and physical safety barriers. Inherently safer design (ISD) is expected to bring about a consolidated and cost-effective risk reduction since it does not require the installation of degradable add-on features and can be applied across the product development life cycle. Hence, this paper aims to apply ISD to the functional safety aspect of safety system development according to IEC 61508. The paper focuses on hardware design and does not cover all aspects of active safety system design. The main objective is to investigate how ISD can reduce risk by reducing random and systematic failures. The paper builds on the review of literature and standards.Keywords: Inherent safetyfunctional safetyIEC 61508 Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationNotes on contributorsPeter OkohPeter Okoh holds a PhD in Reliability, Availability, Maintainability and Safety (RAMS). He studied at the Department of Mechanical and Industrial Engineering, at Norwegian University of Science and Technology, Trondheim, Norway.\",\"PeriodicalId\":45573,\"journal\":{\"name\":\"International Journal of Reliability Quality and Safety Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Reliability Quality and Safety Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/09617353.2023.2263727\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Reliability Quality and Safety Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09617353.2023.2263727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要多年来,为了进一步降低社会风险,功能安全经历了演变。变化以创建新的特定领域标准的形式发生,例如ISO 26262(汽车),EN 50129(铁路),ISO 13489(机械)等,来自母体IEC 61508标准。此外,这些标准也会定期修订,以跟上科技创新的步伐。随着技术空间的扩大和复杂性的增加,由于使用说明书和物理安全屏障的潜在缺陷,它需要的不仅仅是程序性、被动和主动的风险降低策略,以实现最佳的风险降低。固有安全设计(ISD)不需要安装可降解的附加功能,并且可以在整个产品开发生命周期中应用,因此有望带来综合的、具有成本效益的风险降低。因此,本文旨在根据IEC 61508将ISD应用于安全系统开发的功能安全方面。本文主要介绍了主动安全系统的硬件设计,并没有涵盖主动安全系统设计的各个方面。主要目的是研究ISD如何通过减少随机和系统故障来降低风险。本文建立在文献和标准综述的基础上。关键词:固有安全功能安全iec 61508披露声明作者未报告潜在利益冲突。peter Okoh拥有可靠性,可用性,可维护性和安全性(RAMS)博士学位。他曾就读于挪威特隆赫姆的挪威科技大学机械与工业工程系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The application of inherent safety to functional safety
AbstractFunctional safety has experienced evolution over the years aimed at further risk reduction in society. Changes have taken place in the form of the creation of new domain-specific standards such as ISO 26262 (automotive), EN 50129 (railway), ISO 13489 (machinery), etc. from the parent IEC 61508 standard. Besides, these standards also undergo periodic revisions to keep abreast of innovations in technology. As the technological space expands and increases in complexity, it needs more than procedural, passive and active risk reduction strategies to achieve optimal risk reduction due to potential deficiencies with the use of instruction manuals and physical safety barriers. Inherently safer design (ISD) is expected to bring about a consolidated and cost-effective risk reduction since it does not require the installation of degradable add-on features and can be applied across the product development life cycle. Hence, this paper aims to apply ISD to the functional safety aspect of safety system development according to IEC 61508. The paper focuses on hardware design and does not cover all aspects of active safety system design. The main objective is to investigate how ISD can reduce risk by reducing random and systematic failures. The paper builds on the review of literature and standards.Keywords: Inherent safetyfunctional safetyIEC 61508 Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationNotes on contributorsPeter OkohPeter Okoh holds a PhD in Reliability, Availability, Maintainability and Safety (RAMS). He studied at the Department of Mechanical and Industrial Engineering, at Norwegian University of Science and Technology, Trondheim, Norway.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
25.00%
发文量
26
期刊介绍: IJRQSE is a refereed journal focusing on both the theoretical and practical aspects of reliability, quality, and safety in engineering. The journal is intended to cover a broad spectrum of issues in manufacturing, computing, software, aerospace, control, nuclear systems, power systems, communication systems, and electronics. Papers are sought in the theoretical domain as well as in such practical fields as industry and laboratory research. The journal is published quarterly, March, June, September and December. It is intended to bridge the gap between the theoretical experts and practitioners in the academic, scientific, government, and business communities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信